scholarly journals On the structure of the magnetic field near a black hole in active galactic nuclei

2013 ◽  
Vol 39 (4) ◽  
pp. 215-220 ◽  
Author(s):  
V. S. Beskin ◽  
A. A. Zheltoukhov
Author(s):  
Bobur Turimov

Astrophysical accretion processes near the black hole candidates, such as active galactic nuclei (AGN), X-ray binary (XRB), and other astrophysical sources, are associated with high-energetic emission of radiation of relativistic particles and outflows (winds and/or jets). It is widely believed that the magnetic field plays a very important role to explain such high energetic processes in the vicinity of those astrophysical sources. In the present research note, we propose that the black hole is embedded in an asymptotically uniform magnetic field. We investigate the dynamical motion of charged particles in the vicinity of a weakly magnetized black hole. We show that in the presence of the magnetic field, the radius of the innermost stable circular orbits (ISCO) for a charged particle is located close to the black hole’s horizon. The fundamental frequencies, such as Keplerian and epicyclic frequencies of the charged particle are split into two parts due to the magnetic field, as an analog of the Zeeman effect. The orbital velocity of the charged particle measured by a local observer has been computed in the presence of the external magnetic field. We also present an analytical expression for the four-acceleration of the charged particle orbiting around black holes. Finally, we determine the intensity of the radiating charged accelerating relativistic particle orbiting around the magnetized black hole.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450010 ◽  
Author(s):  
ANTONIO C. GUTIÉRREZ-PIÑERES ◽  
GONZALO GARCÍA-REYES ◽  
GUILLERMO A. GONZÁLEZ

The exact superposition of a central static black hole with surrounding thin disk in presence of a magnetic field is investigated. We consider two models of disk, one of infinite extension based on a Kuzmin–Chazy–Curzon metric and other finite based on the first Morgan–Morgan disk. We also analyze a simple model of active galactic nuclei (AGN) consisting of black hole, a Kuzmin–Chazy–Curzon disk and two rods representing jets, in presence of magnetic field. To explain the stability of the disks, we consider the matter of the disk made of two pressureless streams of counter-rotating charged particles (counter-rotating model) moving along electrogeodesic. Using the Rayleigh criterion, we derivate for circular orbits the stability conditions of the particles of the streams. The influence of the magnetic field on the matter properties of the disk and on its stability are also analyzed.


2016 ◽  
Vol 12 (S324) ◽  
pp. 149-156
Author(s):  
Talvikki Hovatta

AbstractAccording to the currently favored picture, relativistic jets in active galactic nuclei (AGN) are launched in the vicinity of the black hole by magnetic fields extracting energy from the spinning black hole or the accretion disk. In the past decades, various models from shocks to magnetic reconnection have been proposed as the energy dissipation mechanism in the jets. This paper presents a short review on how linear polarization observations can be used to constrain the magnetic field structure in the jets of AGN, and how the observations can be used to constrain the various emission models.


1986 ◽  
Vol 119 ◽  
pp. 395-398
Author(s):  
Sanjay M. Wagh ◽  
N. Dadhich

Using the fact that the efficiency of the revived (Wagh et al 1985) Penrose process of energy extraction from black holes immersed in electromagnetic fields can be very high (Parthasarathy et al, 1986) we show that this process can comfortably power the ‘central engine’ in Active Galactic Nuclei. The microphysical Penrose process energized particles will be ultrarelativistic in the asymptotic frame. Hence the kinematical analysis of escaping photons by Piran and Shaham (1977) will be a good approximation to the kinematics of these particles. From this analysis one expects the energized particles to emerge within an angle∼ 40° above and below the equatorial plane. These energetic particles, which are collimated in the funnel of an accretion disk and further on by the magnetic field, then, form supersonic, relativistic, bilateral jets. The relativistic Y factor for such jets can be expected to be ∼ 2 since these ultrarelativistic particles will effectively mimick radiation in ‘dragging’ the matter already injected inside the funnel. Various implications of high energy extraction efficiency are illustrated.


2008 ◽  
Vol 17 (09) ◽  
pp. 1531-1535 ◽  
Author(s):  
V. M. VITRISHCHAK ◽  
D. C. GABUZDA

We present the results of parsec-scale circular polarization measurements based on Very Long Baseline Array data for a number of radio-bright, core-dominated active galactic nuclei obtained simultaneously at 22 and 15 GHz. The degrees of circular polarization mc for the VLBI core region at 15 GHz are similar to values reported earlier at this wavelength, with typical values of a few tenths of a percent. The origin of this polarization is almost certainly the conversion of linear to circular polarization during the propagation of the radiation through a magnetised plasma. We find that mc is as often higher as lower at the higher frequency, for reasons that are not clear. Our results confirm the earlier finding that the sign of the circular polarization at a given observing frequency is generally consistent across epochs separated by several years or more, suggesting stability of the magnetic field orientation in the innermost jets.


Sign in / Sign up

Export Citation Format

Share Document