Development of a Vector Finder Toolkit for Track Reconstruction in MPD ITS

2021 ◽  
Vol 52 (4) ◽  
pp. 788-792
Author(s):  
D. Zinchenko ◽  
A. Zinchenko ◽  
E. Nikonov
Keyword(s):  
Particles ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 333-342
Author(s):  
Ignacio Lázaro Roche

Tomography based on cosmic muon absorption is a rising technique because of its versatility and its consolidation as a geophysics tool over the past decade. It allows us to address major societal issues such as long-term stability of natural and man-made large infrastructures or sustainable underwater management. Traditionally, muon trackers consist of hodoscopes or multilayer detectors. For applications with challenging available volumes or the wide field of view required, a thin time projection chamber (TPC) associated with a Micromegas readout plane can provide a good tradeoff between compactness and performance. This paper details the design of such a TPC aiming at maximizing primary signal and minimizing track reconstruction artifacts. The results of the measurements performed during a case study addressing the aforementioned applications are discussed. The current works lines and perspectives of the project are also presented.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Samuel Maddrell-Mander ◽  
Lakshan Ram Madhan Mohan ◽  
Alexander Marshall ◽  
Daniel O’Hanlon ◽  
Konstantinos Petridis ◽  
...  

AbstractThis paper presents the first study of Graphcore’s Intelligence Processing Unit (IPU) in the context of particle physics applications. The IPU is a new type of processor optimised for machine learning. Comparisons are made for neural-network-based event simulation, multiple-scattering correction, and flavour tagging, implemented on IPUs, GPUs and CPUs, using a variety of neural network architectures and hyperparameters. Additionally, a Kálmán filter for track reconstruction is implemented on IPUs and GPUs. The results indicate that IPUs hold considerable promise in addressing the rapidly increasing compute needs in particle physics.


Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


2020 ◽  
Vol 137 ◽  
pp. 106438
Author(s):  
A. Stabilini ◽  
M.S. Akselrod ◽  
V. Fomenko ◽  
S. Greilich ◽  
J. Harrison ◽  
...  

2019 ◽  
Vol 214 ◽  
pp. 01050 ◽  
Author(s):  
David Rohr ◽  
Sergey Gorbunov ◽  
Schmidt Ole Marten ◽  
Ruben Shahoyan

In LHC Run 3, ALICE will increase the data taking rate significantly to 50 kHz continuous read-out of minimum bias Pb—Pb collisions. The reconstruction strategy of the online-offline computing upgrade foresees a first synchronous online reconstruction stage during data taking enabling detector calibration and data compression, and a posterior calibrated asynchronous reconstruction stage. Many new challenges arise, among them continuous TPC read-out, more overlapping collisions, no a priori knowledge of the primary vertex and of location-dependent calibration in the synchronous phase, identification of low-momentum looping tracks, and sophisticated raw data compression. The tracking algorithm for the Time Projection Chamber (TPC) will be based on a Cellular Automaton and the Kalman filter. The reconstruction shall run online, processing 50 times more collisions per second than today, while yielding results comparable to current offline reconstruction. Our TPC track finding leverages the potential of hardware accelerators via the OpenCL and CUDA APIs in a shared source code for CPUs and GPUs for both reconstruction stages. We give an overview of the status of Run 3 tracking including performance on processors and GPUs and achieved compression ratios.


Sign in / Sign up

Export Citation Format

Share Document