Differential Characteristics of the Overexpanded Gas Jet Flow Field in the Vicinity of the Nozzle Edge

2019 ◽  
Vol 64 (4) ◽  
pp. 441-448 ◽  
Author(s):  
M. V. Chernyshov ◽  
L. G. Gvozdeva
Keyword(s):  
Jet Flow ◽  
Gas Jet ◽  
2019 ◽  
Vol 89 (4) ◽  
pp. 483
Author(s):  
М.В. Чернышов ◽  
Л.Г. Гвоздева

AbstractA parametric study of the features of the flow field of a plane and axisymmetric overexpanded ideal gas jet in the vicinity of the nozzle edge has been conducted over the entire theoretically admissible range of determining parameters (nozzle divergence angles, exhaust Mach numbers, jet incalculabilities, and gas adiabat indicators). The exhaust parameters that correspond to the extremes of the differential characteristics of a shockwave falling (descending) from the edge and the flow field behind it have been revealed. A significant difference in the character of changes in the characteristics of the shockwave and the flow field behind it depending on the type of symmetry of the gas jet has been found and studied.


2011 ◽  
Vol 18 (4) ◽  
pp. 11-18 ◽  
Author(s):  
Jun-guo Li ◽  
Ya-nan Zeng ◽  
Jian-qiang Wang ◽  
Zhi-jie Han
Keyword(s):  
Gas Jet ◽  

1991 ◽  
Vol 18 (1) ◽  
pp. 1-9
Author(s):  
E. Rathakrishnan ◽  
T.J. Ignatius ◽  
Channa Raju

2010 ◽  
Vol 37 (8) ◽  
pp. 2098-2103
Author(s):  
易德先 Yi Dexian ◽  
胡芳友 Hu Fangyou ◽  
赵维义 Zhao Weiyi ◽  
崔爱永 Cui Aiyong ◽  
卢长亮 Lu Changliang

2015 ◽  
Vol 27 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Haifu Wang ◽  
Liangcai Cai ◽  
Xiaolei Chong ◽  
Hao Geng

A combined blast fence is introduced in this paper to improve the solid blast fences and louvered ones. Experiments of the jet engine exhaust flow (hereinafter jet flow for short) field and tests of three kinds of blast fences in two positions were carried out. The results show that the pressure and temperature at the centre of the jet flow decrease gradually as the flow moves farther away from the nozzle. The pressure falls fast with the maximum rate of 41.7%. The dynamic pressure 150 m away from the nozzle could reach 58.8 Pa, with a corresponding wind velocity of 10 m/s. The temperature affected range of 40°C is 113.5×20 m. The combined blast fence not only reduces the pressure of the flow in front of it but also solves the problems that the turbulence is too strong behind the solid blast fences and the pressure is too high behind the louvered blast fences. And the pressure behind combined blast fence is less than 10 Pa. The height of the fence is related to the distance from the jet nozzle. The nearer the fence is to the nozzle, the higher it is. When it is farther from the nozzle, its height can be lowered.


Fuel ◽  
2019 ◽  
Vol 257 ◽  
pp. 116081 ◽  
Author(s):  
Yan Lei ◽  
Jiaxing Liu ◽  
Tao Qiu ◽  
Yunqiang Li ◽  
Yupeng Wang ◽  
...  

2011 ◽  
Vol 19 (03) ◽  
pp. 291-316 ◽  
Author(s):  
ALI UZUN ◽  
M. YOUSUFF HUSSAINI

This paper demonstrates an application of computational aeroacoustics to the prediction of noise generated by a round nozzle jet flow. In this study, the nozzle internal flow and the free jet flow outside are computed simultaneously by a high-order accurate, multi-block, large-eddy simulation (LES) code with overset grid capability. To simulate the jet flow field and its radiated noise, we solve the governing equations on approximately 370 million grid points using high-fidelity numerical schemes developed for computational aeroacoustics. Projection of the near-field noise to the far-field is accomplished by coupling the LES data with the Ffowcs Williams–Hawkings method. The main emphasis of these simulations is to compute the jet flow in sufficient detail to accurately capture the physical processes that lead to noise generation. Two separate simulations are performed using turbulent and laminar inflow conditions at the jet nozzle inlet. Simulation results are compared with the corresponding experimental measurements. Results show that nozzle inflow conditions have an influence on the jet flow field and far-field noise.


Sign in / Sign up

Export Citation Format

Share Document