Geoelectric section of the Central Tien Shan: Sequential inversion of the magnetovariational and magnetotelluric data along the Naryn Line

2010 ◽  
Vol 46 (8) ◽  
pp. 698-706 ◽  
Author(s):  
M. N. Berdichevsky ◽  
N. S. Golubtsova ◽  
Iv. M. Varentsov ◽  
P. Yu. Pushkarev ◽  
A. K. Rybin ◽  
...  
2021 ◽  
Vol 254 ◽  
pp. 02003
Author(s):  
Elena Bataleva

The paper presents the results of experiments carried out at the regime points of magnetotelluric monitoring both on the territory of the Bishkek geodynamic test site (Northern Tien Shan) and on a series of monitoring profiles in various geological conditions. Previous studies indicate the relationship of variations in the electromagnetic and seismic fields, lunisolar tidal effects, seismic regime with the processes of fracturing. The purpose of this work is to establish the features of the relationship between the spatio-temporal distribution of seismicity and the distribution of geoelectric inhomogeneities in the Earth’s crust (fault-block tectonics of the region). Based on the analysis of the results of the interpretation of magnetotelluric data (2D inversion) and new detailed seismotomographic constructions, the verification of geoelectric models was carried out, the analysis of the distribution of hypocenters of seismic events was carried out. Special attention was paid to the confinement of earthquakes to listric fault structures. The relationship between the distribution of the hypocenters of seismic events and the spatial position of the electrical conductivity anomalies is confirmed by the authors explanation of the physical nature of the identified conducting structures, based on hypotheses of fluidization and partial melt of the Earth’s crust.


2021 ◽  
Vol 496 (2) ◽  
pp. 101-106
Author(s):  
A. K. Rybin ◽  
E. A. Bataleva ◽  
V. E. Matiukov ◽  
Yu. A. Morozov ◽  
K. S. Nepeina

Abstract New results of a detailed study of the deep structure of the Central Tien Shan along the Son-Kul magnetotelluric (MT) profile crossing the Son-Kul Lake are reported. Based on the results of magnetotelluric data modeling, the regional and local geoelectric anomalies in the lithosphere are studied and their quantitative characteristics are given. Geological interpretation of the geoelectric cross-section was carried out, which supported the existing ideas about the block–hierarchical structure of the upper part of the Earth’s crust. This corresponds to the tectonophysical concepts of the sequential inserted subordination of large and smaller elements of the zone–block structure consisting of stable blocks and limiting mobile zones, which are distinguished by the high dislocation of the geological substrate. The integral pattern of the distribution and morphology of zones of high electrical conductivity in this segment of the Central Tien Shan crust may reflect discretely localized palm tree–type structures associated with the evolution of transgressive suture zones of localized deformation during the Hercynian and Alpine tectogenesis.


2010 ◽  
Vol 46 (8) ◽  
pp. 679-697 ◽  
Author(s):  
M. N. Berdichevsky ◽  
E. Yu. Sokolova ◽  
Iv. M. Varentsov ◽  
A. K. Rybin ◽  
N. V. Baglaenko ◽  
...  

2021 ◽  
Vol 929 (1) ◽  
pp. 012007
Author(s):  
E S Przhiyalgovskii ◽  
A K Rybin ◽  
Yu A Morozov ◽  
E V Lavrushina ◽  
M G Leonov ◽  
...  

Abstract The article presents the results of complex geological and geophysical studies in the Naryn depression and Atbashi depression in the Middle Tien Shan. They included the geological interpretation of new magnetotelluric data along the detailed profile crossing the key segment of the Tien Shan, and the study of the morphology and spatial position of the sedimentary cover and basement structures. The compilation of the results of structural-geological and geophysical studies makes it possible to create a 2D model of the upper-crust geological structure, consistent with the structure of the electrical conductivity to depths of about 10 km and to analyze the structural features of deeper horizons. Two types of structural patterns of the electric conductivity, corresponding to the sedimentary complexes of the cover and the folded-metamorphic complexes of the basement, have been identified. Sedimentary rock complexes in depressions have a high electrical conductivity and subhorizontal structure. The upper crust above the K2 density layer is characterized by an alternation of rocks volumes with contrasting conductivity, elongated vertically. The recorded structure of the field confirms the presence of steep zones of fluid permeability and fragmentation, noted earlier in seismic profiles and probably corresponding to the Paleozoic structures of fragmentation of the Earth’s crust, activated during Alpine orogeny. Comprehensive research allow to characterize the deformations of the Cenozoic sedimentary complex and the surface of the Paleozoic basement associated with the Alpine activation of the key segment of the Tien Shan.


2021 ◽  
Vol 62 (4) ◽  
pp. 474-485
Author(s):  
E.V. Pospeeva ◽  
V.V. Potapov

Abstract ––Results of magnetotelluric studies (MTS) carried out along the SW–NE and W–E profiles across the Chuya depression are used to demonstrate the deep geoelectric structure of its internal field and the zones of transition to the northern (Kurai Ridge) and southern (South Chuya Ridge) mountainous frames. The Chuya depression is an area with small-block structure, with its axial part comprised of the thinnest sedimentary deposits (450–650 m). The key sites of the zones of transition from this depression to the Kurai and the South Chuya ridges manifest a complete geoelectric section of sedimentary deposits with a total thickness of 1000–1200 m. Subvertical conductive heterogeneous beds of abnormally low (<5 Ohm∙m) specific resistivity are mapped in the section of the sedimentary cover and the Paleozoic basement. They mark neotectonic faults and nodes of their intersection with the Paleozoic and Mesozoic faults. The kinematic parameters of the faults determined from the magnetotelluric data are generally consistent with the data of morphotectonic and geological studies.


Sign in / Sign up

Export Citation Format

Share Document