Stimuli-Responsive Hydrogel Based on Poly((2-Dimethylamino)Ethyl Methacrylate) Grafted onto Sodium Alginate as a Drug Delivery System

2019 ◽  
Vol 61 (5) ◽  
pp. 642-652
Author(s):  
M. Kurdtabar ◽  
G. Rezanejade Bardajee
Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 619
Author(s):  
Krisztián Pamlényi ◽  
Katalin Kristó ◽  
Orsolya Jójárt-Laczkovich ◽  
Géza Regdon

Currently, pharmaceutical companies are working on innovative methods, processes and products. Oral mucoadhesive systems, such as tablets, gels, and polymer films, are among these possible products. Oral mucoadhesive systems possess many advantages, including the possibility to be applied in swallowing problems. The present study focused on formulating buccal mucoadhesive polymer films and investigating the physical and physical–chemical properties of films. Sodium alginate (SA) and hydroxypropyl methylcellulose (HPMC) were used as film-forming agents, glycerol (GLY) was added as a plasticizer, and cetirizine dihydrochloride (CTZ) was used as an active pharmaceutical ingredient (API). The polymer films were prepared at room temperature with the solvent casting method by mixed two-level and three-level factorial designs. The thickness, tensile strength (hardness), mucoadhesivity, surface free energy (SFE), FTIR, and Raman spectra, as well as the dissolution of the prepared films, were investigated. The investigations showed that GLY can reduce the mucoadhesivity of films, and CTZ can increase the tensile strength of films. The distribution of CTZ proved to be homogeneous in the films. The API could dissolve completely from all the films. We can conclude that polymer films with 1% and 3% GLY concentrations are appropriate to be formulated for application on the buccal mucosa as a drug delivery system.


2018 ◽  
Vol 33 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Hongying Su ◽  
Wen Zhang ◽  
Yayun Wu ◽  
Xiaodong Han ◽  
Gang Liu ◽  
...  

Stimuli-responsive hydrogels have been widely researched as carrier systems, due to their excellent biocompatibility and responsiveness to external physiologic environment factors. In this study, dextran-based nanogel with covalently conjugated doxorubicin (DOX) was developed via Schiff base formation using the inverse microemulsion technique. Since the Schiff base linkages are acid-sensitive, drug release profile of the DOX-loaded nanogel would be pH-dependent. In vitro drug release studies confirmed that DOX was released much faster under acidic condition (pH 2.0, 5.0) than that at pH 7.4. Approximately 66, 28, and 9% of drug was released in 72 h at pH 2.0, 5.0, and 7.4, respectively. Cell uptake by the human breast cancer cell (MCF-7) demonstrated that the DOX-loaded dextran nanogel could be internalized through endocytosis and distributed in endocytic compartments inside tumor cells. These results indicated that the Schiff base-containing nanogel can serve as a pH-sensitive drug delivery system. And the presence of multiple aldehyde groups on the nanogel are available for further conjugations of targeting ligands or imaging probes.


RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 82334-82341 ◽  
Author(s):  
Xuelian Zhi ◽  
Yanfang Wang ◽  
Pengfei Li ◽  
Jiang Yuan ◽  
Jian Shen

Nanoscale polyion complex formation via the electrostatic complexation of a polyelectrolyte and a charged drug is the most convenient method for building a drug delivery system that simultaneously realizes the carrier preparation and drug embedding.


Sign in / Sign up

Export Citation Format

Share Document