Metallogenic analysis of the type gold-bearing districts in the southern and eastern framing of the North Asian Craton: Geotectonic position, geological structure, and specifics of formation

2013 ◽  
Vol 7 (6) ◽  
pp. 416-426 ◽  
Author(s):  
V. G. Khomich ◽  
I. I. Fatyanov ◽  
N. G. Boriskina
2019 ◽  
Vol 31 (6) ◽  
pp. 332-344 ◽  
Author(s):  
Jānis Karušs ◽  
Kristaps Lamsters ◽  
Anatolii Chernov ◽  
Māris Krievāns ◽  
Jurijs Ješkins

AbstractThis study presents the first subglacial topography and ice thickness models of the largest ice caps of the Argentine Islands, Wilhelm Archipelago, West Antarctica. During this study, ground-penetrating radar was used to map the thickness and inner structure of the ice caps. Digital surface models of all studied islands were created from aerial images obtained with a small-sized unmanned aerial vehicle and used for the construction of subglacial topography models. Ice caps of the Argentine Islands cover ~50% of the land surface of the islands on average. The maximum thickness of only two islands (Galindez and Skua) exceeds 30 m, while the average thickness of all islands is only ~5 m. The maximum ice thickness reaches 35.3 m on Galindez Island. The ice thickness and glacier distribution are mainly governed by prevailing wind direction from the north. This has created the prominent narrow ice ridges on Uruguay and Irizar islands, which are not supported by topographic obstacles, as well as the elongated shape of other ice caps. The subglacial topography of the ice caps is undulated and mainly dependent on the geological structure and composition of magmatic rocks.


2012 ◽  
Vol 445 (2) ◽  
pp. 947-950 ◽  
Author(s):  
A. A. Sorokin ◽  
A. P. Sorokin ◽  
V. A. Ponomarchuk ◽  
Yu. A. Martynov ◽  
A. M. Larin ◽  
...  

2021 ◽  
Author(s):  
Vladimir Cheverda ◽  
Vadim Lisitsa ◽  
Maksim Protasov ◽  
Galina Reshetova ◽  
Andrey Ledyaev ◽  
...  

Abstract To develop the optimal strategy for developing a hydrocarbon field, one should know in fine detail its geological structure. More and more attention has been paid to cavernous-fractured reservoirs within the carbonate environment in the last decades. This article presents a technology for three-dimensional computing images of such reservoirs using scattered seismic waves. To verify it, we built a particular synthetic model, a digital twin of one of the licensed objects in the north of Eastern Siberia. One distinctive feature of this digital twin is the representation of faults not as some ideal slip surfaces but as three-dimensional geological bodies filled with tectonic breccias. To simulate such breccias and the geometry of these bodies, we performed a series of numerical experiments based on the discrete elements technique. The purpose of these experiments is the simulation of the geomechanical processes of fault formation. For the digital twin constructed, we performed full-scale 3D seismic modeling, which made it possible to conduct fully controlled numerical experiments on the construction of wave images and, on this basis, to propose an optimal seismic data processing graph.


2016 ◽  
Vol 10 (1) ◽  
pp. 13-27
Author(s):  
M. V. Goroshko ◽  
B. F. Shevchenko ◽  
V. A. Guryanov ◽  
G. Z. Gil’manova

KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
Fatimah Fatimah

Tulakan Subdistrict, Pacitan Regency, East Java Province. This area is part of the Southern Mountain Zone of East Java, which is the Sunda-Banda magmatic arc of Oligo-Miocene age, where there are alterations and indications of valuable ore minerals. Field magnetic data is taken in an area of 1 x 1 km, with the looping method on the grid trajectory within 200 x 100 m. Then, magnetic data correction and data processing were carried out with Oasis Montaj. From the magnetic anomaly map, the value of high magnetic intensity in the southern part is fresh (intrusive) andesit-dasitic rock as host rock which causes alteration, in the middle has a low magnetic intensity value which is in the direction of the relatively NE-SW river direction, whereas in the north with high intensity is fresh andesite lava. From the image data, it can be seen that the straightness pattern of the geological structure which is dominated by the extensional structure with the direction of NE-SW and E-W is the main trap of epithermal veins carrying ore mineralization mainly Cu, Pb in the study area.


Author(s):  
K. Ya. Bulakhova ◽  
S. M. Sudarikov

The results of hydrogeochemical monitoring of the Sarmat-Meotis-Pontic sediments aquifer complex of the North Sivash artesian basin have been analyzed. The analysis based on a routine observations for 16 producing wells. The observations were made in the period from 2014 to 2017 years. A correlation and regression analysis has been made for definition of dependencies between changes in the concentrations of the normalized components. The results obtained allow us to evaluate the main factors of formation of the chemical composition of groundwater. At the present stage, metamorphosed waters are pulled up from the lower strata of the complex, that leads to an increase in the amount of mineralization. The formation of sulphate waters is primarily associated with the peculiarities of the geological structure, namely, the high gypsum content of quaternary deposits and the presence of hydraulic connection with the overlying aquifers. One of the reasons for the formation of sulphate waters is the anthropogenic impact associated with the close location of the acid accumulator containing sulfur tailing. The results obtained allow us to proceed to the next stage of the survey — the creation of a natural hydrogeological model of the research area and the carrying of the thermodynamic modeling.


Author(s):  
Miftahul Jannah ◽  
Adi Suryadi ◽  
Muchtar Zafir ◽  
Randi Saputra ◽  
Ihsanul Hakim ◽  
...  

On the study area there are three types of structure, those are fault, fold and joint. Types of fault were found  in the study area, reverse fault with the strike/dip is N215oE/75o, normal fault has a fault directions N22oE and N200oE with pitch 35o, and dextral fault with pitch 10o and strike N219oE. Fold and joint structures used to determine the direction of the main stress on the study area. Further, an analysis used stereonet for data folds and joints. So that from the data got three directions of main stress, those are Northeast – Southwest (T1), North – South (T2) and Southeast – Northwest (T3). On the Northeast – Southwest (T1) stress there are four geological structures, anticline fold at ST.3 , syncline folds at ST. 13a, ST. 13b, ST. 13c and ST. 33, chevron fold at ST. 44 and joint at ST. 2. On the North – South (T2) stress there are three geological structures, those are syncline fold at ST. 35, anticline fold at ST. 54 and joints at ST. 41, ST. 46 and ST. 47. On the Southeast – Northwest (T3) stress were also three geological structures, those are chevron fold at ST 42a, overturned fold at ST. 42b, syncline fold at ST. 42c and joints at ST. 5 and ST. 34.


2009 ◽  
Vol 4 ◽  
pp. 201-221 ◽  
Author(s):  
S. D. Sokolov ◽  
G. Ye. Bondarenko ◽  
P. W. Layer ◽  
I. R. Kravchenko-Berezhnoy

Abstract. Geochronologic and structural data from the terranes of the South Anyui suture zone record a protracted deformational history before, during and after an Early Cretaceous collision of the passive margin of the Chukotka-Arctic Alaska continental block with the active continental margin of the North Asian continent. Preceding this collision, the island arc complexes of the Yarakvaam terrane on the northern margin of the North Asian craton record Early Carboniferous to Neocomian ages in ophiolite, sedimentary, and volcanic rocks. Triassic to Jurassic amphibolites constrain the timing of subduction and intraoceanic deformation along this margin. The protracted (Neocomian to Aptian) collision of the Chukotka passive margin with the North Asian continent is preserved in a range of structural styles including first north verging folding, then south verging folding, and finally late collisional dextral strike slip motions which likely record a change from orthogonal collision to oblique collision. Due to this collision, the southern passive margin of Chukotka was overthrust by tectonic nappes composed of tectono-stratigraphic complexes of the South Anyui terrane. Greenschists with ages of 115–119 Ma are related to the last stages of this collision. The postcollisional orogenic stage (Albian to Cenomanian) is characterized by sinistral strike slip faults and an extensional environment.


Sign in / Sign up

Export Citation Format

Share Document