Age, Mineralogical and Geochemical Features, and Tectonic Position of Gabbroids of the Dzhigdinskii Massif, Southeastern Environ of the North Asian Craton

2018 ◽  
Vol 12 (3) ◽  
pp. 210-224
Author(s):  
A. A. Rodionov ◽  
I. V. Buchko ◽  
N. M. Kudryashov
2012 ◽  
Vol 445 (2) ◽  
pp. 947-950 ◽  
Author(s):  
A. A. Sorokin ◽  
A. P. Sorokin ◽  
V. A. Ponomarchuk ◽  
Yu. A. Martynov ◽  
A. M. Larin ◽  
...  

2016 ◽  
Vol 10 (1) ◽  
pp. 13-27
Author(s):  
M. V. Goroshko ◽  
B. F. Shevchenko ◽  
V. A. Guryanov ◽  
G. Z. Gil’manova

2009 ◽  
Vol 4 ◽  
pp. 201-221 ◽  
Author(s):  
S. D. Sokolov ◽  
G. Ye. Bondarenko ◽  
P. W. Layer ◽  
I. R. Kravchenko-Berezhnoy

Abstract. Geochronologic and structural data from the terranes of the South Anyui suture zone record a protracted deformational history before, during and after an Early Cretaceous collision of the passive margin of the Chukotka-Arctic Alaska continental block with the active continental margin of the North Asian continent. Preceding this collision, the island arc complexes of the Yarakvaam terrane on the northern margin of the North Asian craton record Early Carboniferous to Neocomian ages in ophiolite, sedimentary, and volcanic rocks. Triassic to Jurassic amphibolites constrain the timing of subduction and intraoceanic deformation along this margin. The protracted (Neocomian to Aptian) collision of the Chukotka passive margin with the North Asian continent is preserved in a range of structural styles including first north verging folding, then south verging folding, and finally late collisional dextral strike slip motions which likely record a change from orthogonal collision to oblique collision. Due to this collision, the southern passive margin of Chukotka was overthrust by tectonic nappes composed of tectono-stratigraphic complexes of the South Anyui terrane. Greenschists with ages of 115–119 Ma are related to the last stages of this collision. The postcollisional orogenic stage (Albian to Cenomanian) is characterized by sinistral strike slip faults and an extensional environment.


2013 ◽  
Vol 51 (12) ◽  
pp. 1025-1030
Author(s):  
I. V. Buchko ◽  
A. A. Sorokin ◽  
V. I. Rozhdestvina ◽  
Ir. V. Buchko

Geosaberes ◽  
2020 ◽  
Vol 11 ◽  
pp. 480
Author(s):  
Mehdi Bina ◽  
Mohammad Ali Arian ◽  
Mohsen Pourkermani ◽  
Mohammad Hasan Bazoobandi

The study area is located in Lavasanat region in the east of Tehran Province in the Central Alborz zone. The outcrops in this region are mainly associated with Karaj formation and belong to the upper Eocene to Oligocene periods. These outcrops consist of two intrusions: one in the north and the other in the northeast of Lavasanat. These outcrops are scattered over an area of approximately 337km2. In the study region, there are various intrusive igneous rocks, while numerous intrusive igneous rocks are scattered in the form of sills and dikes. These rocks include a range of rocks from diorite gabbro to diorite, monzonite, and syenite. The weathered colors of these rocks are black, brown and gray. The outcrops of these sills are mainly present in the middle-northern part of the quadrangle geological map of the east of Tehran. In different diagrams of the magma series, the study rocks are classified as alkaline, calc-alkaline, and shoshonite, which may indicate magma contamination. An analysis of the variations of the classical elements and trace elements, the spider plots, and interpretations of these plots confirms the relationship of these rocks with the subduction zone and continental arc. To find the tectonic position of the sills in the study area based on the geochemical diagrams, we selected samples from the within-plate (WIP) and arc zones.


Author(s):  
B. Grasemann ◽  
D.A. Schneider ◽  
K. Soukis ◽  
V. Roche ◽  
B. Hubmann

The paleogeographic position of the central Dodecanese Islands at the transition between the Aegean and Anatolian plates plays a considerable role in understanding the link between both geologically unique domains. In this study, we investigate the tectonic history of the central Dodecanese Islands and the general correlation with the Aegean and western Anatolian and focus on the poorly studied islands of Kalymnos and Telendos. Three different major tectonic units were mapped on both islands from bottom to top: (1) The Kefala Unit consists of late Paleozoic, fossil-rich limestones, which have been deformed into a SE-vergent fold-and-thrust belt sealed by an up to 200-m-thick wildflysch-type olistostrome with marble and ultramafic blocks on a scale of tens of meters. (2) The Marina Basement Unit consists of a Variscan amphibolite facies basement with garnet mica schists, quartzites, and amphibolites. (3) Verrucano-type formation violet shales and Mesozoic unmetamorphosed limestones form the Marina Cover Unit. Correlation of these units with other units in the Aegean suggests that Kalymnos is paleogeographically located at the southern margin of the Pelagonian domain, and therefore it was in a structurally upper tectonic position during the Paleogene Alpine orogeny. New white mica 40Ar/39Ar ages confirm the Carboniferous deformation of the Marina Basement Unit followed by a weak Triassic thermal event. Single-grain white mica 40Ar/39Ar ages from pressure solution cleavage of the newly defined Telendos Thrust suggest that the Marina Basement Unit was thrusted toward the north on top of the Kefala Unit in the Paleocene. Located at a tectonically upper position, the units exposed in the central Dodecanese escaped subduction and the syn-orogenic, high-pressure metamorphism. However, these units were affected by post-orogenic extension, and the contact between the Marina Basement Unit and the non-metamorphic Marina Cover Unit has been reactivated by the cataclastic top-to-SSW, low-angle Kalymnos Detachment. Zircon (U-Th)/He ages from the Kefala and Marina Basement Units are ca. 30 Ma, which indicates that exhumation and cooling below the Kalymnos Detachment started in the Oligocene. Conjugate brittle high-angle normal fault systems, which resulted in the formation of four major WNW-ESE−trending graben systems on Kalymnos, localized mainly in the Marina Cover Unit and probably rooted in the mechanically linked Kalymnos Detachment. Since Oligo-Miocene deformation in the northern Dodecanese records top-to-NNE extension and the Kalymnos Detachment accommodated top-to-SSW extension, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent.


2009 ◽  
Vol 4 ◽  
pp. 71-84 ◽  
Author(s):  
A. V. Prokopiev ◽  
J. Toro ◽  
J. K. Hourigan ◽  
A. G. Bakharev ◽  
E. L. Miller

Abstract. The Okhotsk terrane, located east of the South Verkhoyansk sector of the Verkhoyansk fold-and-thrust belt, has Archean crystalline basement and Riphean to Early Paleozoic sedimentary cover similar to that of the adjacent the North Asian craton. However, 2.6 Ga biotite orthogneisses of the Upper Maya uplift of the Okhotsk terrane yielded Early Devonian 40Ar/39Ar cooling ages, evidence of a Mid-Paleozoic metamorphic event not previously known. These gneisses are also intruded by 375±2 Ma (Late Devonian) calc-alkaline granodiorite plutons that we interpret as part of a continental margin volcanic arc. Therefore, Late Devonian rifting, which affected the entire eastern margin of North Asia separating the Okhotsk terrane from the North Asian craton, was probably a back-arc event. Our limited 40Ar/39Ar data from the South Verkhoyansk metamorphic belt suggests that low grade metamorphism and deformation started in the Late Jurassic due to accretion of the Okhotsk terrane to the North Asia margin along the Bilyakchan fault. Shortening and ductile strain continued in the core of the South Verkhoyansk metamorphic belt until about 120 Ma due to paleo-Pacific subduction along the Uda-Murgal continental margin arc.


Sign in / Sign up

Export Citation Format

Share Document