The Conditions for the Existence of an Extended Region of Gas Hydrate Formation in a Porous Medium

2020 ◽  
Vol 41 (7) ◽  
pp. 1222-1227
Author(s):  
M. K. Khasanov ◽  
N. G. Musakaev
2008 ◽  
Vol 6 ◽  
pp. 178-183
Author(s):  
M.K. Khasanov ◽  
N.G. Musakaev

The features of the gas hydrates formation at the gas injection into the porous medium initially saturated with gas and water are considered. Self-similar solutions of the axisymmetric problem describing the distribution of the main parameters in a reservoir are constructed. The solutions have been found according to which the gas hydrate formation can occur at the frontal surface or in the extended area.


The purpose of this paper is to study the thermodynamic modeling of the conditions for methane and ethane gas hydrate formation and their mixtures in a porous and non-porous environment. In this paper, the Van der Waals- Platteeuw thermodynamic model was used for prediction of gas hydrate formation conditions. Also, the SRK and PTV equations of state were used for calculations of driving force. In this research, the results of thermodynamic modeling in a porous were compared with the non-porous environment and laboratory data in the literature. Studies have shown that the results of the modeling are in good agreement with the laboratory data and the percentage of errors is low. The results also showed that with increasing pressure of porous and non-porous media, the equilibrium temperature increases. In addition, the effect of the pore diameter of porous media on the results of modeling was investigated for methane, ethane and their mixtures during gas hydrates formation. The results showed that by increasing the pressure for any size of the pore diameter of the porous medium, hydrate formation temperature increases. In addition, by increasing the pore diameter of the porous medium, hydrate formation temperature methane, ethane and their mixture increase at a constant pressure. The results also showed that the equilibrium temperature of the non-porous medium is higher than the equilibrium temperature of the non-porous medium. This shows that the hydrate formation in the porous medium has a deterrent effect and leads to lower temperatures and higher temperatures conditions for gas hydrate formation. The results showed that by increasing the percentage of methane in a porous or non-porous medium, the temperature of hydrate formation of the binary gas mixture of methane and ethane decreases.


2012 ◽  
Vol 9 (1) ◽  
pp. 72-75
Author(s):  
I.K. Gimaltdinov ◽  
M.K. Khasanov ◽  
M.V. Stolpovsky ◽  
S.R. Kildibaeva

Theoretically, the processes of gas hydrate formation in gases saturated with gas and water porous media of finite length when they are blown with cold gas. The influence of initial parameters of the porous medium, as well as blowdown conditions on the features of the evolution of the hydration-saturation fields and temperature. It is shown that for some parameters of the injected gas, the boundary can be stopped phase transition.


2014 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Peyman Sabzi ◽  
Saheb Noroozi

Gas hydrates formation is considered as one the greatest obstacles in gas transportation systems. Problems related to gas hydrate formation is more severe when dealing with transportation at low temperatures of deep water. In order to avoid formation of Gas hydrates, different inhibitors are used. Methanol is one of the most common and economically efficient inhibitor. Adding methanol to the flow lines, changes the thermodynamic equilibrium situation of the system. In order to predict these changes in thermodynamic behavior of the system, a series of modelings are performed using Matlab software in this paper. The main approach in this modeling is on the basis of Van der Waals and Plateau's thermodynamic approach. The obtained results of a system containing water, Methane and Methanol showed that hydrate formation pressure increases due to the increase of inhibitor amount in constant temperature and this increase is more in higher temperatures. Furthermore, these results were in harmony with the available empirical data.Keywords: Gas hydrates, thermodynamic inhibitor, modelling, pipeline blockage


Sign in / Sign up

Export Citation Format

Share Document