Conformal Radius Has Unique Critical Point when Pre-Schwarzian Derivative is Subordinate to Classical Majorants

2021 ◽  
Vol 42 (12) ◽  
pp. 2816-2822
Author(s):  
A. V. Kazantsev
1993 ◽  
Vol 03 (02) ◽  
pp. 323-332 ◽  
Author(s):  
MICHAŁ MISIUREWICZ

Following Brown [1992, 1993] we study maps of the real line into itself obtained from the modified Chua equations. We fix our attention on a one-parameter family of such maps, which seems to be typical. For a large range of parameters, invariant intervals exist. In such an invariant interval, the map is piecewise continuous, with most of pieces of continuity mapped in a monotone way onto the whole interval. However, on the central piece there is a critical point. This allows us to find sometimes a smaller invariant interval on which the map is unimodal. In such a way, we get one-parameter families of smooth unimodal maps, very similar to the well-known family of logistic maps x ↦ ax(1−x). We study more closely one of those and show that these maps have negative Schwarzian derivative. This implies the existence of at most one attracting periodic orbit. Moreover, there is a set of parameters of positive measure for which chaos occurs.


1995 ◽  
Vol 15 (1) ◽  
pp. 99-120 ◽  
Author(s):  
Gerhard Keller ◽  
Tomasz Nowicki

AbstractWe prove that unimodal Fibonacci maps with negative Schwarzian derivative and a critical point of order ℓ have a finite absolutely continuous invariant measure if ℓ ∈ (1 ℓ1) where ℓ1 is some number strictly greater than 2. This extends results of Lyubich and Milnor for the case ℓ = 2.


1983 ◽  
Vol 34 (3) ◽  
pp. 676-682 ◽  
Author(s):  
N. A. Bobyl�v

1994 ◽  
Vol 14 (4) ◽  
pp. 721-755 ◽  
Author(s):  
Michael Jakobson ◽  
Grzegorz Światek

AbstractFor an arbitrary non-renormalizable unimodal map of the interval,f:I→I, with negative Schwarzian derivative, we construct a related mapFdefined on a countable union of intervals Δ. For each interval Δ,Frestricted to Δ is a diffeomorphism which coincides with some iterate offand whose range is a fixed subinterval ofI. IfFsatisfies conditions of the Folklore Theorem, we callfexpansion inducing. Letcbe a critical point off. Forfsatisfyingf″(c) ≠ 0, we give sufficient conditions for expansion inducing. One of the consequences of expansion inducing is that Milnor's conjecture holds forf: the ω-limit set of Lebesgue almost every point is the interval [f2,f(c)]. An important step in the proof is a starting condition in the box case: if for initial boxes the ratio of their sizes is small enough, then subsequent ratios decrease at least exponentially fast and expansion inducing follows.


Author(s):  
Francesca Dalbono ◽  
Matteo Franca ◽  
Andrea Sfecci

Abstract We study existence and multiplicity of positive ground states for the scalar curvature equation $$\begin{aligned} \varDelta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n\,, \quad n>2, \end{aligned}$$ Δ u + K ( | x | ) u n + 2 n - 2 = 0 , x ∈ R n , n > 2 , when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ K : R + → R + is bounded above and below by two positive constants, i.e. $$0<\underline{K} \le K(r) \le \overline{K}$$ 0 < K ̲ ≤ K ( r ) ≤ K ¯ for every $$r > 0$$ r > 0 , it is decreasing in $$(0,{{{\mathcal {R}}}})$$ ( 0 , R ) and increasing in $$({{{\mathcal {R}}}},+\infty )$$ ( R , + ∞ ) for a certain $${{{\mathcal {R}}}}>0$$ R > 0 . We recall that in this case ground states have to be radial, so the problem is reduced to an ODE and, then, to a dynamical system via Fowler transformation. We provide a smallness non perturbative (i.e. computable) condition on the ratio $$\overline{K}/\underline{K}$$ K ¯ / K ̲ which guarantees the existence of a large number of ground states with fast decay, i.e. such that $$u(|x|) \sim |x|^{2-n}$$ u ( | x | ) ∼ | x | 2 - n as $$|x| \rightarrow +\infty $$ | x | → + ∞ , which are of bubble-tower type. We emphasize that if K(r) has a unique critical point and it is a maximum the radial ground state with fast decay, if it exists, is unique.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
B. K. Kirchoff ◽  
L.F. Allard ◽  
W.C. Bigelow

In attempting to use the SEM to investigate the transition from the vegetative to the floral state in oat (Avena sativa L.) it was discovered that the procedures of fixation and critical point drying (CPD), and fresh tissue examination of the specimens gave unsatisfactory results. In most cases, by using these techniques, cells of the tissue were collapsed or otherwise visibly distorted. Figure 1 shows the results of fixation with 4.5% formaldehyde-gluteraldehyde followed by CPD. Almost all cellular detail has been obscured by the resulting shrinkage distortions. The larger cracks seen on the left of the picture may be due to dissection damage, rather than CPD. The results of observation of fresh tissue are seen in Fig. 2. Although there is a substantial improvement over CPD, some cell collapse still occurs.Due to these difficulties, it was decided to experiment with cold stage techniques. The specimens to be observed were dissected out and attached to the sample stub using a carbon based conductive paint in acetone.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Sign in / Sign up

Export Citation Format

Share Document