Apparent height of a transfer unit in the diffusional model of longitudinal mixing

1969 ◽  
Vol 34 (2) ◽  
pp. 387-394 ◽  
Author(s):  
V. Rod
2014 ◽  
Vol 659 ◽  
pp. 503-508
Author(s):  
Sorin Gabriel Vernica ◽  
Aneta Hazi ◽  
Gheorghe Hazi

Increasing the energy efficiency of a gas turbine plant can be achieved by exhaust gas heat recovery in a recovery boiler. Establishing some correlations between the parameters of the boiler and of the turbine is done usually based on mathematical models. In this paper it is determined from experimental point of view, the effectiveness of a heat recovery boiler, which operates together with a gas turbine power plant. Starting from the scheme for framing the measurement devices, we have developed a measurement procedure of the experimental data. For experimental data processing is applied the effectiveness - number of transfer unit method. Based on these experimental data we establish correlations between the recovery boiler effectiveness and the gas turbine plant characteristics. The method can be adapted depending on the type of flow in the recovery boiler.


1960 ◽  
Vol 12 (1) ◽  
pp. 20-34 ◽  
Author(s):  
E.J. Cairns ◽  
J.M. Prausnitz

2008 ◽  
Vol 575-578 ◽  
pp. 174-179
Author(s):  
Juan Hua Su ◽  
Feng Zhang Ren ◽  
Lei Wang

This paper analyzes the forming process methods of fin used in CPU chip to emit heat. The whole process is blanking, the first forging forming, the second forging (sizing), and trimming. The chamfer design of CPU fin blank is simulated by finite element analysis. The optimized chamfer 1.6 mm is available. Semi-enclosed cold forging of progressive dies is put forward. The newly designed transfer unit is applied, which unifies the merit of high efficiency of the progressive dies and the high material-using ratio of the project die. Quick disassembly structure is designed and pins are used as quick disassembly pins by means of ball bearing bushing. The unique processing of the shearing scrap structure is adopted when designing the inverted trimming dies. Compared with the traditional die, the mechanization and electrization are realized to increase the production efficiency and get highly precise CPU fin.


1985 ◽  
Vol 21 (2) ◽  
pp. 221-228
Author(s):  
Francis J. Ferrandino ◽  
Donald E. Aylor
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1257
Author(s):  
Vid Vončina ◽  
Jože Pihler ◽  
Miro Milanovič

This article presents the development of the theoretical background and the design of an electronic device for monitoring the condition of a gapless Metal Oxide Surge Arrester (MOSA). The device is intended to be used online. Because of the inaccessibility and possible remote location of most surge arresters, it is equipped with a communication system, allowing for the device to convey the measurement of the surge arrester characteristics under any conditions. It is possible to determine the condition of the MOSA by gathering measurements of the surge arrester’s resistive component of leakage current. The leakage current information is sent via data transfer unit to a server and, after interpretation, will be forwarded to the authorised personnel through the surge arrester control centre.


1968 ◽  
Vol 94 (3) ◽  
pp. 566-571
Author(s):  
Hugo B. Fischer ◽  
Nobuhiro Yotsukura

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881349
Author(s):  
Lijing Dong

Synchronization of a large-scale lifting system with hydraulic actuator failures is investigated in this article. The lifting system is composed of multiple intelligent lifting subsystems with hydraulic actuators, wireless data transfer unit, and distributed controller. During the lifting process, the hydraulic actuators are possible to be malfunctioned. Once actuator failure occurs, the number of lifting points and the communication topology would change over different time intervals. This article proposes a distributed synchronization control method and adopts switching technique in analyzing the lifting synchronization. The distributed controller is designed with information received from around subsystems through wireless data transfer unit rather than with direct reference signal from the control station. On the basis of Lyapunov stability theory and switched technique, sufficient conditions that guarantee the synchronization of the lifting system with actuator failures are achieved, and synchronization errors can be reduced as small as desired. Finally, the effectiveness of proposed distributed synchronization controller is verified by numerical simulations conducted on AMESim platform. From the simulation results, it can be seen that when actuator failures occur, the synchronization error of the remaining lifting subsystems is less than 5%. The lifting synchronization error shrinks to 5% in 5.87 s when a broke-down subsystem returns to normal.


Sign in / Sign up

Export Citation Format

Share Document