Competition of 5(O)n and 6(O)n participation by 19a-substituent in hypobromous acid addition to 2,3- and 5,6-unsaturated 19-homocholestane derivatives

1983 ◽  
Vol 48 (12) ◽  
pp. 3606-3617 ◽  
Author(s):  
Pavel Kočovský

19-Substituted 2,3-unsaturated cholestane derivatives IIIa-IIIc react with hypobromous acid to give the cyclic bromo ether VI as sole or major product arising by cleavage of the 2α,3α-bromoion V with 6(O)n participation by the 19a-group. The 5,6-unsaturated alcohol IVa reacts with hypobromous acid to yield the cyclic bromo ether X as product of 5(O)n participation. Under the same conditions, the methoxy derivative IVb yields two products, X and XI, with violation of Fürst-Plattner rule. In similar manner as in the preceding case, the products arise by cleavage of the bromonium ion IXb with 5(O)n participation by the 19a-methoxyl. In contrast, the 5,6-unsaturated acetoxy derivative IVc reacts without participation via two diastereoisomeric bromonium ions VIIIc and XV to give the corresponding diaxial bromohydrins XVI and XVII which undergo spontaneous cyclization to the epoxides XVIII and XIX. The course of these reactions, comparison with the lower homologs of the type I and II, the role of Markovnikov and Fürst-Plattner rules and capability of the particular functional groups to participate in 5(O)n and 6(O)n processes are discussed.

1983 ◽  
Vol 48 (12) ◽  
pp. 3618-3628 ◽  
Author(s):  
Pavel Kočovský

On reaction with hypobromous acid, the unsaturated alcohol IIIa yields the diequatorial bromo epoxide XIX arising from the 5α,6α-bromonium ion XVIIIa on cleavage at C(5) by 19b-hydroxyl group with 6(O)n participation. By contrast, the bromonium ion XVIIIb generated from the unsaturated methyl ether IIIb is cleaved by water as external nucleophile to yield the unstable diaxial bromohydrin XX which undergoes cyclization to the oxirane derivative XXI. A comparison with the reaction course in homologs of the type I and II permits the conclusion that the change in regioselectivity, generally possible outcome of the 5(O)n participation, is only possible for the 6(O)n process if the participating group is a hydroxyl.


1983 ◽  
Vol 48 (12) ◽  
pp. 3660-3673 ◽  
Author(s):  
Pavel Kočovský

5(O)n and 6(O)π,n participations by some oxygen containing functional groups in the course of reaction with hypobromous acid have been studied on olefinic models of steroid type (I and II). The ability of these groups to participate has been compared on the basis of their relative reactivity with water (as externally attacking nucleophile) competing with participation. The results of the product analysis show that the ability to react with 5(O)n participation decreases in the order HO > CH3O ≃ CH3OCH2O > CH3CO2 > HCO2 > CH3SO3 ≥ (C2H5O)2PO2 > C6H5CO2 > O2NO ≫ CF3CO2, C2H5OCO2; in the last two functional groups is this ability completely suppressed. The 6(O)π,n participation comes in consideration only for compounds of the type II bearing the groups with the -X=O moiety which are ordered in the following sequence: C2H5OCO2 ≃ CH3CO2 ≥ (C2H5O)2PO2 > HCO2 > C6H5CO2. The remaining functional groups (CF3CO2, O2NO and CH3SO3do not undergo this process. Generally, it is valid that introduction of electron-withdrawing substituents into a participating group impedes or completely suppresses its ability to participate.


1980 ◽  
Vol 45 (11) ◽  
pp. 3023-3029 ◽  
Author(s):  
Pavel Kočovský ◽  
Václav Černý

Reactions of 19-hydroxy-, methoxy- and acetoxy-5-cholestenes Ia, IIa, IIIa were studied and compared with those previously obtained with analogous 3β-acetoxy-19-substituted 5-cholestenes Ib, IIb, IIIc. A marked difference was found in 19-acetoxy derivatives where the 3-unsubstituted compound IIIa yields exclusively the bromohydrin XVIa as a product of 6(O)π,n participation while the 3β-acetoxy derivative IIIb gives, apart from the analogous bromohydrin XVIb, also products of competing reactions: The epoxide XIIb and the bromohydrin XIIIb.


1982 ◽  
Vol 47 (11) ◽  
pp. 3062-3076 ◽  
Author(s):  
Václav Černý ◽  
Pavel Kočovský

Reactions of the title compounds (bearing an OH, OCH3 or OCOCH3 group at C(19)) involve 5(O)n, 7(O)π,n-participation by the 19-substituent or attack by an external nucleophile. The 6(O)π,n-participation does not occur. The behavior of 1,2-unsaturated (or epoxidated) compounds has been compared with the earlier described 2,3-unsaturated or epoxidated analogs. The 1,2-type is genarally less prone to participation. The reasons for this behavior are discussed.


Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Chapter 10 “Environmental DNA for functional diversity” discusses the potential of environmental DNA to assess functional diversity. It first focuses on DNA metabarcoding and discusses the extent to which this approach can be used and/or optimized to retrieve meaningful information on the functions of the target community. This knowledge usually involves coarsely defined functional groups (e.g., woody, leguminous, graminoid plants; shredders or decomposer soil organisms; pathogenicity or decomposition role of certain microorganisms). Chapter 10 then introduces metagenomics and metatranscriptomics approaches, their advantages, but also the challenges and solutions to appropriately sampling, sequencing these complex DNA/RNA populations. Chapter 10 finally presents several strategies and software to analyze metagenomes/metatranscriptomes, and discusses their pros and cons.


Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 38-49
Author(s):  
Lakhdar Benhamed ◽  
Sidi Mohamed Mekelleche ◽  
Wafaa Benchouk

Experimentally, a reversal of chemoselectivity has been observed in catalyzed Diels–Alder reactions of α,β-unsaturated aldehydes (e.g., (2E)-but-2-enal) and ketones (e.g., 2-hexen-4-one) with cyclopentadiene. Indeed, using the triflimidic Brønsted acid Tf2NH as catalyst, the reaction gave a Diels–Alder adduct derived from α,β-unsaturated ketone as a major product. On the other hand, the use of tris(pentafluorophenyl)borane B(C6F5)3 bulky Lewis acid as catalyst gave mainly the cycloadduct of α,β-unsaturated aldehyde as a major product. Our aim in the present work is to put in evidence the role of the catalyst in the reversal of the chemoselectivity of the catalyzed Diels–Alder reactions of (2E)-but-2-enal and 2-Hexen-4-one with cyclopentadiene. The calculations were performed at the ωB97XD/6-311G(d,p) level of theory and the solvent effects of dichloromethane were taken into account using the PCM solvation model. The obtained results are in good agreement with experimental outcomes.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 246
Author(s):  
Patrick Severin Sfragano ◽  
Giulia Moro ◽  
Federico Polo ◽  
Ilaria Palchetti

Peptides represent a promising class of biorecognition elements that can be coupled to electrochemical transducers. The benefits lie mainly in their stability and selectivity toward a target analyte. Furthermore, they can be synthesized rather easily and modified with specific functional groups, thus making them suitable for the development of novel architectures for biosensing platforms, as well as alternative labelling tools. Peptides have also been proposed as antibiofouling agents. Indeed, biofouling caused by the accumulation of biomolecules on electrode surfaces is one of the major issues and challenges to be addressed in the practical application of electrochemical biosensors. In this review, we summarise trends from the last three years in the design and development of electrochemical biosensors using synthetic peptides. The different roles of peptides in the design of electrochemical biosensors are described. The main procedures of selection and synthesis are discussed. Selected applications in clinical diagnostics are also described.


Sign in / Sign up

Export Citation Format

Share Document