acid cleavage
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 16)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sagar Sridhara ◽  
Hemant N. Goswami ◽  
Charlisa Whyms ◽  
Jonathan H. Dennis ◽  
Hong Li

AbstractAmong the currently available virus detection assays, those based on the programmable CRISPR-Cas enzymes have the advantage of rapid reporting and high sensitivity without the requirement of thermocyclers. Type III-A CRISPR-Cas system is a multi-component and multipronged immune effector, activated by viral RNA that previously has not been repurposed for disease detection owing in part to the complex enzyme reconstitution process and functionality. Here, we describe the construction and application of a virus detection method, based on an in vivo-reconstituted Type III-A CRISPR-Cas system. This system harnesses both RNA- and transcription-activated dual nucleic acid cleavage activities as well as internal signal amplification that allow virus detection with high sensitivity and at multiple settings. We demonstrate the use of the Type III-A system-based method in detection of SARS-CoV-2 that reached 2000 copies/μl sensitivity in amplification-free and 60 copies/μl sensitivity via isothermal amplification within 30 min and diagnosed SARS-CoV-2-infected patients in both settings. The high sensitivity, flexible reaction conditions, and the small molecular-driven amplification make the Type III-A system a potentially unique nucleic acid detection method with broad applications.


2021 ◽  
Vol 14 (10) ◽  
pp. 956
Author(s):  
Ana Margarida Pereira ◽  
André da Costa ◽  
Simoni Campos Dias ◽  
Margarida Casal ◽  
Raul Machado

Antimicrobial resistance is an increasing global threat, demanding new therapeutic biomolecules against multidrug-resistant bacteria. Antimicrobial peptides (AMPs) are promising candidates for a new generation of antibiotics, but their potential application is still in its infancy, mostly due to limitations associated with large-scale production. The use of recombinant DNA technology for the production of AMPs fused with polymer tags presents the advantage of high-yield production and cost-efficient purification processes at high recovery rates. Owing to their unique properties, we explored the use of an elastin-like recombinamer (ELR) as a fusion partner for the production and isolation of two different AMPs (ABP-CM4 and Synoeca-MP), with an interspacing formic acid cleavage site. Recombinant AMP-ELR proteins were overproduced in Escherichia coli and efficiently purified by temperature cycles. The introduction of a formic acid cleavage site allowed the isolation of AMPs, resorting to a two-step methodology involving temperature cycles and a simple size-exclusion purification step. This simple and easy-to-implement purification method was demonstrated to result in high recovery rates of bioactive AMPs. The minimum inhibitory concentration (MIC) of the free AMPs was determined against seven different bacteria of clinical relevance (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two Burkholderia cenocepacia strains), in accordance with the EUCAST/CLSI antimicrobial susceptibility testing standards. All the bacterial strains (except for Pseudomonas aeruginosa) were demonstrated to be susceptible to ABP-CM4, including a resistant Burkholderia cenocepacia clinical strain. As for Synoeca-MP, although it did not inhibit the growth of Pseudomonas aeruginosa or Klebsiella pneumoniae, it was demonstrated to be highly active against the remaining bacteria. The present work provides the basis for the development of an efficient and up-scalable biotechnological platform for the production and purification of active AMPs against clinically relevant bacteria.


2021 ◽  
Vol 8 ◽  
Author(s):  
Amanda L. Skarlupka ◽  
Ted M. Ross

Influenza virus vaccines have been designed for human and veterinary medicine. The development for broadly protective influenza virus vaccines has propelled the vaccine field to investigate and include neuraminidase (NA) components into new vaccine formulations. The antibody-mediated protection induced by NA vaccines is quantified by inhibition of sialic acid cleavage. Non-immune inhibitors against influenza viruses naturally occur in varying proportions in sera from different species. In this brief report, the inherent ability of raw animal sera to inhibit a panel of influenza virus NA was determined. Raw sera from the same species inhibited more than 50% of influenza viruses tested from four different subtypes, but the breadth of inhibiting NA activity depended on the source of sera. Furthermore, different influenza viruses were inhibited by different sources of sera. Overall, additional studies are needed to ensure that scientific methods are consistent across studies in order to compare NA inhibition results. Through future investigation into the differences between sera from different animal species and how they influence NA inhibition assays, there can be effective development of a broadly protective influenza virus vaccines for veterinary and human use.


2020 ◽  
pp. 153537022097397
Author(s):  
Maria Troisi ◽  
Mitchell Klein ◽  
Andrew C Smith ◽  
Gaston Moorhead ◽  
Yonatan Kebede ◽  
...  

The objectives of this study are to evaluate the structure and protein recognition features of branched DNA four-way junctions in an effort to explore the therapeutic potential of these molecules. The classic immobile DNA 4WJ, J1, is used as a matrix to design novel intramolecular junctions including natural and phosphorothioate bonds. Here we have inserted H2-type mini-hairpins into the helical termini of the arms of J1 to generate four novel intramolecular four-way junctions. Hairpins are inserted to reduce end fraying and effectively eliminate potential nuclease binding sites. We compare the structure and protein recognition features of J1 with four intramolecular four-way junctions: i-J1, i-J1(PS1), i-J1(PS2) and i-J1(PS3). Circular dichroism studies suggest that the secondary structure of each intramolecular 4WJ is composed predominantly of B-form helices. Thermal unfolding studies indicate that intramolecular four-way junctions are significantly more stable than J1. The Tm values of the hairpin four-way junctions are 25.2° to 32.2°C higher than the control, J1. With respect to protein recognition, gel shift assays reveal that the DNA-binding proteins HMGBb1 and HMGB1 bind the hairpin four-way junctions with affinity levels similar to control, J1. To evaluate nuclease resistance, four-way junctions are incubated with DNase I, exonuclease III (Exo III) and T5 exonuclease (T5 Exo). The enzymes probe nucleic acid cleavage that occurs non-specifically (DNase I) and in a 5ʹ→3ʹ (T5 Exo) and 3ʹ→5ʹ direction (Exo III). The nuclease digestion assays clearly show that the intramolecular four-way junctions possess significantly higher nuclease resistance than the control, J1.


2020 ◽  
Author(s):  
Rabeb Layouni ◽  
Michael Dubrovsky ◽  
Mengdi Bao ◽  
Haejun Chung ◽  
Ke Du ◽  
...  

AbstractUsing porous silicon (PSi) interferometer sensors, we show the first experimental implementation of the high contrast probe cleavage detection (HCPCD) mechanism. HCPCD makes use of dramatic optical signal amplification caused by cleavage of high-contrast nanoparticle labels on probes instead of the capture of low-index biological molecules. An approximately 2 nm reflectance peak shift was detected after cleavage of DNA-quantum dot probes from the PSi surface via exposure to a 12.5 nM DNase enzyme solution for 2 hrs. This signal change is 20 times greater than the resolution of the spectrometer used for the interferometric measurements, and the interferometric measurements agree with the interferometric response predicted by simulations and fluorescence measurements. These proof of principle experiments show a clear path to real-time, highly sensitive and inexpensive point-of-care readout for a broad range of biological diagnostic assays that generate signal via nucleic acid cleavage.


2020 ◽  
Vol 7 (13) ◽  
pp. 1903770 ◽  
Author(s):  
Shao‐Ru Wang ◽  
Hai‐Yan Huang ◽  
Jian Liu ◽  
Lai Wei ◽  
Ling‐Yu Wu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 15 (6) ◽  
pp. 1455-1463 ◽  
Author(s):  
Shaoru Wang ◽  
Lai Wei ◽  
Jia-Qi Wang ◽  
Huimin Ji ◽  
Wei Xiong ◽  
...  
Keyword(s):  

Author(s):  
Praveen Anand ◽  
Arjun Puranik ◽  
Murali Aravamudan ◽  
AJ Venkatakrishnan ◽  
Venky Soundararajan

Molecular mimicry of host proteins is an evolutionary strategy adopted by viruses to evade immune surveillance and exploit host cell systems. We report that SARS-CoV-2 has evolved a unique S1/S2 cleavage site (RRARSVAS), absent in any previous coronavirus sequenced, that results in mimicry of an identical FURIN-cleavable peptide on the human epithelial sodium channel α-subunit (ENaC-α). Genetic truncation at this ENaC-α cleavage site causes aldosterone dysregulation in patients, highlighting the functional importance of the mimicked SARS-CoV-2 peptide. Single cell RNA-seq from 65 studies shows significant overlap between the expression of ENaC-α and ACE2, the putative receptor for the virus, in cell types linked to the cardiovascular-renal-pulmonary pathophysiology of COVID-19. Triangulating this cellular fingerprint with amino acid cleavage signatures of 178 human proteases shows the potential for tissue-specific proteolytic degeneracy wired into the SARS-CoV-2 lifecycle. We extrapolate that the evolution of SARS-CoV-2 into a global coronavirus pandemic may be in part due to its targeted mimicry of human ENaC and hijack of the associated host proteolytic network.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 111-121
Author(s):  
Yinghua Qi ◽  
Akash Nathani ◽  
Jianxin Zhang ◽  
Zhengji Song ◽  
Chandra Shekhar Sharma ◽  
...  

AbstractA strategy for the synthesis of well defined poly(ethylene glycol)-block-poly(methyl methacrylate) diblock copolymers containing trityl ether acid cleavable junctions is demonstrated. This approach is achieved by using a combination of poly(ethylene glycol) macroinitiator containing a trityl ether end group, which is susceptible to acid cleavage, and atom transfer radical polymerization technique. The trityl ether linkage between blocks can be readily cleaved in solution or in solid phase under very mild acid condition, which has been confirmed by 1H NMR. These diblock copolymers have been used to successfully fabricate nanoporous thin films by acid cleavage of trityl ether junction followed by complete removal of poly(ethylene glycol) block. The fabricated nanoporous thin films may have a wide range of application such as Recessed Nanodisk-array electrode (RNE) or as a template to fabricate nanoelectrode array for senor applications.


Sign in / Sign up

Export Citation Format

Share Document