Stereostructure of slovanolides: X-ray crystallography of the 3-oxo-4αH,8α-benzoyloxy-10β,11α-diacetoxyslovanolide

1984 ◽  
Vol 49 (12) ◽  
pp. 2790-2800 ◽  
Author(s):  
Urszula Rychłewska ◽  
Miroslav Holub ◽  
Miloš Buděšínský ◽  
Zdenka Smítalová

X-Ray structural analysis of 3-oxo-4αH,8α-benzoyloxy-10β,11α-diacetoxyslovanolide (XII) confirmed the correctness of the previously proposed structure of slovanolides. A comparison of the X-ray and 1H NMR data of lactone XII showed that the confirmation of this substance in crystals and in chloroform or benzene solutions is very similar. The structure of the lactone from Laserpitium marginatum has been corrected to formula XIa.

1987 ◽  
Vol 42 (12) ◽  
pp. 1556-1562 ◽  
Author(s):  
W. S. Sheldrick ◽  
S. Heeb

Abstract1:1 Methylmercury(II) complexes of the anti-tumour agent 6-azauracil (6AUH2) and its deriva­tives 6-azathymine (6ATH2). 1-methyl-6-azauracil (6AMUH) and 1-methyl-6-azathymine (6AMTH) have been isolated from aqueous solutions of CH3HgOH and the respective base. N3-Coordination was established by X-ray structural analysis for both [(CH3Hg)6 AUH] (1) (pH 6-8) and [(CH3Hg)6 AMT] (5) (pH 4-12); in addition 1H NMR data are in accordance with an identical binding site in the complexes [(CH3Hg)6AMU] (3) and [(CH3Hg)6 ATH] (4). Using an excess of CH3HgOH. 2:1 complexes with N1, N3-coordination may be prepared for both 6 AUH: and 5 AUH2 in a wide pH range (4-12 and 6-12 respectively). At pH values of 3-4 a 3:1 complex [(CH3Hg)35 AU]NO3 (7), with N1, N3, N5-coordination may be isolated: the binding sites were confirmed by X-ray structural analysis. In no case could an ionic complex with N6- coordination be isolated for a 6-azapyrimidine derivative. The binding preferences of the bases are discussed in the light of MNDO calculations.


1993 ◽  
Vol 48 (8) ◽  
pp. 1069-1074 ◽  
Author(s):  
William S. Sheldrick ◽  
Thomas Häusler

The hexaethylcyclohexaarsoxane complexes [{M(CO)3}2{cyclo-(C2H5AsO)6}], M = Cr, Mo, W, 2-4 have been prepared by the reaction of (C2H5AsO)n with the respective metal hexacarbonyl in toluene and characterized by their IR and NMR spectroscopic data. For 2 the molecular structure was established by X-ray structural analysis. The 12 atoms of the As6O6 ring form a flattened cuboctahedron in which the 6 oxygen atoms lie in the central equatorial plane. Cr(CO)3 groups are coordinated facially by the upper and lower three arsenic atoms. An approximately S6 symmetry is displayed by the Cr2As6O6 core. Average values of respectively 116.3 and 98.9° are observed for the As–O–As and O–As–O angles in the hexadentate ligand. The ΕΙ-MS and 1H NMR data for (C2H5AsO)n suggest that this alkylcycloarsoxane is present in solution as a mixture of species including trimers and tetramers so that a metal assisted ring expansion is required for the formation of 2-4.


2020 ◽  
Author(s):  
Marat Korsik ◽  
Edwin Tse ◽  
David Smith ◽  
William Lewis ◽  
Peter J. Rutledge ◽  
...  

<p></p><p>We have discovered and studied a <i>tele</i>substitution reaction in a biologically important heterocyclic ring system. Conditions that favour the <i>tele</i>-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base, or the use of softer nucleophiles, less polar solvents and larger halogens on the electrophile. Using results from X-ray crystallography and isotope labelling experiments a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the <i>in vivo </i>active anti-plasmodium compounds of Series 4 of the Open Source Malaria consortium.</p> <p> </p> <p>Archive of the electronic laboratory notebook with the description of all conducted experiments and raw NMR data could be accessed via following link <a href="https://ses.library.usyd.edu.au/handle/2123/21890">https://ses.library.usyd.edu.au/handle/2123/21890</a> . For navigation between entries of laboratory notebook please use file "Strings for compounds in the article.pdf" that works as a reference between article codes and notebook codes, also this file contain SMILES for these compounds. </p><br><p></p>


1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.


1985 ◽  
Vol 63 (11) ◽  
pp. 2915-2921 ◽  
Author(s):  
Ian M. Piper ◽  
David B. MacLean ◽  
Romolo Faggiani ◽  
Colin J. L. Lock ◽  
Walter A. Szarek

The products of a Pictet–Spengler condensation of tryptamine and of histamine with 2,5-anhydro-D-mannose have been studied by X-ray crystallography to establish their absolute configuration. 1(S)-(α-D-Arabinofuranosyl)-1,2,3,4-tetrahydro-β-carboline (1), C16H20N20O4, is monoclinic, P21 (No. 4), with cell dimensions a = 13.091(4), b = 5.365(1), c = 11.323(3) Å, β = 115.78(2)°, and Z = 2. 4-(α-D-Arabinofuranosyl)imidazo[4,5-c]-4,5,6,7-tetrahydropyridine (3), C11H17N3O4, is orthorhombic, P212121 (No. 19), with cell dimensions a = 8.118(2), b = 13.715(4), c = 10.963(3) Å, and Z = 4. The structures were determined by direct methods and refined to R1 = 0.0514, R2 = 0.0642 for 3210 reflections in the case of 1, and to R1 = 0.0312, R2 = 0.0335 for 1569 reflections in the case of 3. Bond lengths and angles within both molecules are normal and agree well with those observed in related structures. In 3 the base and sugar adopt a syn arrangement, which is maintained by an internal hydrogen bond between O(2′) and N(3). The sugar adopts a normal 2T3 twist conformation. The sugar has the opposite anti arrangement in the β-carboline 1 and the conformation of the sugar is unusual; it is close to an envelope conformation with O(4′) being the atom out of the plane. This conformation is caused by a strong intermolecular hydrogen bond from O(5′) in a symmetry-related molecule to O(4′). Both compounds are held together in the crystal by extensive hydrogen-bonding networks. The conformations of the compounds in solution have been investigated by 1H nmr spectroscopy, and the results obtained were compared with those obtained by X-ray crystallography for 1 and 3.


2003 ◽  
Vol 81 (7) ◽  
pp. 825-831 ◽  
Author(s):  
Chunlin Ma ◽  
Qin Jiang ◽  
Rufen Zhang

The new organotin compound, Ph2Sn(Cl)[S(C7H3N2O2S)]·[(C7H3N2O2S)OEt], assembled by an intermolecular aromatic benzothiazole–benzothiazole π-π stacking interaction, has been synthesized by the reaction of diphenyltin dichloride with 2-mercapto-6-nitrobenzothiazole. The title compound was characterized by elemental, IR, 1H NMR, and X-ray crystallography analyses. Single-crystal X-ray diffraction data reveals that the title compound has two different molecular components. The component Ph2Sn(Cl)[S(C7H3N2O2S)] has a pentacoordinate tin, which further forms an infinite one-dimensional chain by intermolecular non-bonded Cl···S interactions, resulting in an intercalation lattice that holds (C7H3N2O2S)OEt molecules. The formation of the molecule (C7H3N2O2S)OEt as well as its intercalated mechanism has also been discussed.Key words: organotin, assemble, π-π stacking interaction, 2-mercapto-6-nitrobenzothiazole, non-bonded interaction, crystal structure.


2005 ◽  
Vol 60 (10) ◽  
pp. 1049-1053 ◽  
Author(s):  
Zeanab Talaei ◽  
Ali Morsali ◽  
Ali R. Mahjoub

Two new ZnII(phen)2 complexes with trichloroacetate and acetate anions, [Zn(phen)2(CCl3COO)- (H2O)](ClO4) and [Zn(phen)2(CH3COO)](ClO4), have been synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. The single crystal X-ray data of these compounds show the Zn atoms to have six-coordinate geometry. From IR spectra and X-ray crystallography it is established that the coordination of the COO− group is different for trichloroacetate and acetate. The former acts as a monodentate whereas the latter acts as a bidentate ligand.


Sign in / Sign up

Export Citation Format

Share Document