Analysis of the oscillatory behaviour of an industrial reactor for oxonation of propene; Combined models

1987 ◽  
Vol 52 (12) ◽  
pp. 2865-2875
Author(s):  
Josef Horák ◽  
Zdeněk Bělohlav ◽  
Petr Rosol ◽  
František Madron

Models have been used of the flow of the liquid phase in the reactor (cascade of two ideally mixed cells of different size, two equal-size cells with recycle, two equal-size cells with inlets to both cells and a model of two equal-size cells preceded with a back flow element with plug flow) to analyze the oscillatory states of an industrial reactor. Stable and instable steady states have been classified using analysis of pseudosteady states of conversion and temperature supplemented with a simulation of the dynamic behaviour. It has been that the deviations of the flow from an ideally mixed system may expand the region of the oscillatory behaviour. The detailed information about the character of the flow in the reactor and the way of feeding the reactor has been also found important for the analysis of stability.

1987 ◽  
Vol 52 (6) ◽  
pp. 1454-1460
Author(s):  
Josef Horák ◽  
Zdeněk Bělohlav ◽  
František Madron

The response of an industrial reactor for the oxonation of propene to its spiking with a radioactive tracer was compared with simulated responses obtained for models of various structures, viz. a cascade of two perfectly stirred cells of different size, a cascade of two perfectly stirred cells of the same size with recirculation of the reaction mixture, a cascade of two perfectly stirred cells of the same size with inflow into both cells, and a system of two perfectly stirred cells with back-flow involving a plug-flow element. None of the flow models fitted the experiment perfectly; the best fit was obtained for the combination of perfectly stirred cells and back-flow with a plug-flow element.


1993 ◽  
Vol 27 (5-6) ◽  
pp. 105-110 ◽  
Author(s):  
F. H. L. R. Clemens ◽  
H. J. van Mameren ◽  
J. Kollen

The reduction in pollutional load realised by storm water settling basins is potentially reduced due to the occurrence of a partially mixed situation in the basin or due to resuspension of settled material. The decrease in efficiency can theoretically be avoided by means of partially bypassing the basin. In order to quantify the potential increase in efficiency a settling basin in Amersfoort is taken as an example. This basin seems to behave like an almost completely mixed system, bypassing would increase the overall efficiency from ca. 34 % to ca 39 % for three overflows. The dynamic behaviour of settling basins, scouring conditions and the boundary conditions for which settling basins are to be designed are the research needs for further development in the field of storm water settling basins.


Author(s):  
Meenakshi Sheoran ◽  
Avinash Chandra ◽  
Sanjeev Ahuja ◽  
Haripada Bhunia ◽  
Harish J. Pant

Abstract Residence-time distribution (RTD) experiments were performed to analyze an industrial scale three-tube series continuous pulping digester’s hydrodynamic performance. An impulse of radiotracer 82Br (γ energy source) was introduced at the inlet of the first tube. The radiotracer concentration in the liquid phase was traced at the outlet of each tube. The input behavior of the radiotracer converted to a non-ideal pulse tracer input for the second and third tubes of the digester. Numerical convolution is adopted to deal with the non-ideal pulse input of the radiotracer. A modeling procedure for determining the RTD from the outlet tracer concentration data is proposed. A plug flow component followed by axial dispersion model is considered, and is adjusted after its convolution with the inlet tracer concentration data to obtain the RTD of the individual tubes. The obtained RTD data are analyzed to explain the flow behavior, degree of dispersion, and flow abnormalities existing in the digester. The mean residence-time (MRT), and dispersion number are estimated for the model components for the three tubes. The vessel dispersion number is found to decrease from tube 1 to tube 3. Overall, the conversion of the highly dispersed flow regime into the plug-flow regime is observed in the whole digester.


1984 ◽  
pp. 687-695 ◽  
Author(s):  
T. H. K. Frederking ◽  
C. Chuang ◽  
Y. Kamioka ◽  
J. M. Lee ◽  
S. W. K. Yuan

2001 ◽  
Vol 1 (2) ◽  
pp. 123-130 ◽  
Author(s):  
M.G. El-Din ◽  
D.W. Smith

Most of the mathematical models that are employed to model the performance of bubble columns are based on the assumption that either plug flow or complete mixing conditions prevail in the liquid phase. Although due to the liquid-phase axial dispersion, the actual flow pattern in bubble columns is usually closer to being mixed flow rather than plug flow, but still not completely mixed flow. Therefore, the back flow cell model (BFCM), that hypothesises both back flow and exchange flow to characterise the liquid-phase axial dispersion, is presented as an alternative approach to describe the hydrodynamics and mass transfer of ozone bubble columns. BFCM is easy to formulate and solve. It is an accurate and reliable design model. Transient BFCM consists of NBFCM ordinary-first-order differential equations in which NBFCM unknowns (Yj) are to be determined. That set of equations was solved numerically as NBFCM linear algebraic equations. Steady-state BFCM consists of 3 × NBFCM non-linear algebraic equations in which 3 × NBFCM unknowns (qG,j, Xj, and Yj) are to be determined. Those non-linear algebraic equations were solved numerically using Newton–Raphson technique. Steady-state BFCM was initially tested using the pilot-scale experimental data of Zhou. BFCM provided excellent predictions of the dissolved ozone profiles under different operating conditions for both counter and co-current flow modes.


2006 ◽  
Vol 18 (36) ◽  
pp. S2239-S2246 ◽  
Author(s):  
Limei Xu ◽  
Isaac Ehrenberg ◽  
Sergey V Buldyrev ◽  
H Eugene Stanley

2007 ◽  
Vol 72 (8-9) ◽  
pp. 847-855 ◽  
Author(s):  
Ljiljana Takic ◽  
Vlada Veljkovic ◽  
Miodrag Lazic ◽  
Srdjan Pejanovic

Ozone absorption in water was investigated in a mechanically stirred reactor, using both the semi-batch and continuous mode of operation. A model for the precise determination of the volumetric mass transfer coefficient in open tanks without the necessity of the measurement the ozone concentration in the outlet gas was developed. It was found that slow ozone reactions in the liquid phase, including the decomposition of ozone, can be regarded as one pseudo-first order reaction. Under the examined operating conditions, the liquid phase was completely mixed, while mixing in a gas phase can be described as plug flow. The volumetric mass transfer coefficient was found to vary with the square of the impeller speed. .


Sign in / Sign up

Export Citation Format

Share Document