Voltammetric Studies of Some Novel Fe(III) Complexes with Quadridentate Ligands. The Axial Ligand-Exchange Reactions in DMF and DMSO

1995 ◽  
Vol 60 (7) ◽  
pp. 1140-1157 ◽  
Author(s):  
Ljiljana S. Jovanovic ◽  
Luka J. Bjelica

The electrochemistry of four novel Fe(III) complexes of the type [Fe(L)Cl], involving quadridentate ligands based on the condensation products of benzoylacetone-S-methylisothiosemicarbazone with salicylaldehyde, 5-chlorosalicylaldehyde, 3,5-dichlorosalicylaldehyde or 5-nitrosalicylaldehyde, was studied in DMF and DMSO at a GC electrode. All complexes undergo a two-step one-electron reductions, usually complicated by chemical reactions. In solutions containing Cl-, the ligand-exchange reactions Cl--DMF and Cl--DMSO take place. Stability of the chloride-containing complexes was discussed in terms of the coordinated ligand effect, oxidation state of the central atom and, in particular, of the donor effect of the solvent. Some relevant kinetic data were calculated.

2005 ◽  
Vol 09 (04) ◽  
pp. 248-255 ◽  
Author(s):  
Xichuan Yang ◽  
Mikael Kritikos ◽  
Björn Åkermark ◽  
Licheng Sun

Bis(4-methylpyridine)phthalocyaninato ruthenium(II) has been synthesized. It was proved by single-crystal X-ray diffraction that the central Ru(II) atom is bonded to six N atoms in an elongated octahedral configuration, and the axial ligands have a significantly longer Ru - N bond distance, 2.101(4) Å, than the independent pyrrol Ru - N bond, 1.99 Å. Therefore, the axial ligands can be exchanged by other ligands. The ligand exchange reactions with diethyl pyridyl-4-phosphonate and diethyl pyridylmethyl-4-phosphonate were studied in high boiling-point solvents at elevated temperatures, ca 160 °C. Mono-ligand as well as double-ligand replaced complexes were obtained. The complexes have been isolated by column chromatography. These complexes have potential applications, such as in dye sensitized solar cells.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4139
Author(s):  
Barbora Vénosová ◽  
Ingrid Jelemenská ◽  
Jozef Kožíšek ◽  
Peter Rapta ◽  
Michal Zalibera ◽  
...  

Two 15-membered octaazamacrocyclic nickel(II) complexes are investigated by theoretical methods to shed light on their affinity forwards binding and reducing CO2. In the first complex 1[NiIIL]0, the octaazamacrocyclic ligand is grossly unsaturated (π-conjugated), while in the second 1[NiIILH]2+ one, the macrocycle is saturated with hydrogens. One and two-electron reductions are described using Mulliken population analysis, quantum theory of atoms in molecules, localized orbitals, and domain averaged fermi holes, including the characterization of the Ni-CCO2 bond and the oxidation state of the central Ni atom. It was found that in the [NiLH] complex, the central atom is reduced to Ni0 and/or NiI and is thus able to bind CO2 via a single σ bond. In addition, the two-electron reduced 3[NiL]2− species also shows an affinity forwards CO2.


Author(s):  
Reza Latifi ◽  
Taryn D. Palluccio ◽  
Wanhua Ye ◽  
Jennifer L. Minnick ◽  
Kwame S. Glinton ◽  
...  

2021 ◽  
Vol 23 (5) ◽  
pp. 3467-3478
Author(s):  
J. I. Paez-Ornelas ◽  
H. N. Fernández-Escamilla ◽  
H. A. Borbón-Nuñez ◽  
H. Tiznado ◽  
Noboru Takeuchi ◽  
...  

Atomic description of ALD in systems that combine large surface area and high reactivity is key for selecting the right functional group to enhance the ligand-exchange reactions.


Sign in / Sign up

Export Citation Format

Share Document