Oxidation of Toluene Over V2O5-Sb2O3/TiO2 Catalysts. Enhancement of Selectivity Towards Benzoic Acid

1996 ◽  
Vol 61 (11) ◽  
pp. 1675-1680 ◽  
Author(s):  
Marcel Antol ◽  
Alexander Kaszonyi ◽  
Milan Hronec

The effect of reaction parameters, additives and cooxidants on the selectivity of toluene oxidation to benzoic acid in the vapor phase has been studied. The presence of ethanol as cooxidant in the reaction stream does not improve the selectivity of toluene oxidation towards partial oxidation products via methyl group oxidation. However, the presence of carbon dioxide has a positive effect on the selectivity to benzoic acid formation. The catalysts were characterized by temperature programmed reduction.

1996 ◽  
Vol 61 (11) ◽  
pp. 1665-1674 ◽  
Author(s):  
Marcel Antol ◽  
Katarina Prandová ◽  
Milan Hronec

Vanadium oxide doped with K, Li, Bi, Sb, Te, U or Mo oxide, supported on TiO2 - anatase, was studied by temperature programmed reduction (TPR). The influence of the addition of promoters (up to molar ratio M : V = 0.5) to 5 wt.% V2O5/TiO2 catalyst on the TPR profile is presented in correlation with their catalytic activity in the vapor phase oxidation of toluene. All promoters, except Bi2O3, decrease the catalyst reducibility and decrease the rate of the toluene oxidation. A strong negative influence on the activity of the toluene oxidation have K, Li, and Te oxides. However, the presence of all tested promoters in the molar ratio M : V = 0.05 has a positive effect on the selectivity of benzoic acid formation. A further increase of this ratio leads to a decrease of the selectivity in the case of U, Mo and mainly K oxides, while with Li, Bi, Sb, and Te oxides, the selectivity remains almost unchanged. No correlation between TPR profiles of doped catalysts and their selectivity was found. The most effective promoter of vanadia catalysts for the benzoic acid production is Sb oxide, possessing a very high selectivity at high conversion of toluene.


1983 ◽  
Vol 48 (12) ◽  
pp. 3340-3355 ◽  
Author(s):  
Pavel Fott ◽  
Pavel Šebesta

The kinetic parameters of reactivation of a carbonized hydrodesulphurization (HDS) catalyst by air were evaluated from combined thermogravimetric (TG) and differential thermal analysis (DTA) data. In addition, the gaseous products leaving a temperature-programmed reactor with a thin layer of catalyst were analyzed chromatographically. Two exothermic processes were found to take part in the reactivation, and their kinetics were described by 1st order equations. In the first process (180-400 °C), sulphur in Co and Mo sulphides is oxidized to sulphur dioxide; in the second process (300-540 °C), in which the essential portion of heat is produced, the deposited carbon is oxidized to give predominantly carbon dioxide. If the reaction heat is not removed efficiently enough, ignition of the catalyst takes place, which is associated with a transition to the diffusion region. The application of the obtained kinetic parameters to modelling a temperature-programmed reactivation is illustrated on the case of a single particle.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1066 ◽  
Author(s):  
Bogdan Samojeden ◽  
Marta Kamienowska ◽  
Armando Izquierdo Colorado ◽  
Maria Elena Galvez ◽  
Ilona Kolebuk ◽  
...  

Cenospheres from coal fly ashes were used as support in the preparation of Ni–Mg catalysts for dry reforming of methane. These materials were characterized by means of XRD, H2-temperature-programmed reduction (H2-TPR), CO2-temperature-programmed desorption (CO2-TPD), and low-temperature nitrogen sorption techniques. The cenosphere-supported catalysts showed relatively high activity and good stability in the dry reforming of methane (DRM) at 700 °C. The catalytic performance of modified cenospheres was found to depend on both Ni and Mg content. The highest activity at 750 °C and 1 atm was observed for the catalyst containing 30 wt % Mg and 10, 20, and 30 wt % Ni, yielding to CO2 and CH4 conversions of around 95%.


1982 ◽  
Vol 21 (3) ◽  
pp. 295-298 ◽  
Author(s):  
T. Paryjczak ◽  
J. Rynkowski ◽  
K. Krzyzanowski

1989 ◽  
Vol 67 (6) ◽  
pp. 998-1009 ◽  
Author(s):  
Gunnar Grue-Sørensen ◽  
Ian D. Spenser

It is shown by 13C nuclear magnetic resonance spectroscopy that the labelled C2 fragment of [2,3-13C2]pyruvic acid is transferred intact into the C-methyl group and the adjacent carbon atom of the Ephedra alkaloids, norephedrine, ephedrine, norpseudoephedrine, and pseudoephedrine, in growing plants of Ephedragerardiana. This finding serves to identify pyruvate as the elusive precursor of the aliphatic C2 terminus of the skeleton of the alkaloids. In earlier experiments with C-labelled substrates, label from [3-14C]pyruvic acid was incorporated mainly, but not exclusively, into the C-methyl group of ephedrine, and label from [2-14C]pyruvate was incorporated similarly into the carbon atom adjacent to the C-methyl group. A C6–C1 unit related to benzaldehyde or benzoic acid has long been known to generate the benzylic fragment of the carbon skeleton of the Ephedra alkaloids. It is likely that the carbon skeleton of ephedrine is generated from pyruvate and either benzaldehyde or benzoic acid, by a reaction analogous to the formation of acetoin or diacetyl from pyruvate and acetaldehyde or acetic acid, respectively. Keywords: biosynthesis of ephedrine, Ephedra alkaloids, 13C NMR spectra, ephedrine, biosynthesis of pyruvic acid, incorporation into ephedrine13C NMR spectra.


Sign in / Sign up

Export Citation Format

Share Document