Electrochemical Investigations of the Nickel(II)-Penicillamine System. 2. Direct Identification of Complex Species Involved in Catalytic Nickel Reduction on the Dropping Mercury Electrode

1998 ◽  
Vol 63 (7) ◽  
pp. 995-1006 ◽  
Author(s):  
Florinel G. Banica ◽  
Ana Ion

The catalytic polarographic nickel prewave was investigated by making appropriate correlations between prewave current and complex species concentrations as calculated by means of available formation constants. It was concluded that the active species is (D-penicillaminato-N,S)nickel(II) [NiL], whereas the bis-ligand complex, [NiL2]2-, is inert and does not play any role in the electrode process. The catalytic character of the electrode process originates from the regeneration of [NiL] by the reaction of adsorbed ligand molecules with free nickel ions available in the bulk of the solution. Conversely, all the complex species in the Ni2+-cysteine system are labile. Consequently, the reaction mechanism in this case may include the dissociation of the complex [NiL2]2- as an alternative path for the generation of the active species, [NiL]. The bell-shaped form of the prewave was interpreted in terms of potential-dependent catalyst adsorption.

1984 ◽  
Vol 49 (10) ◽  
pp. 2320-2331 ◽  
Author(s):  
Miroslav Březina ◽  
Martin Wedell

Reduction of oxygen and oxidation of hydrogen peroxide at the dropping mercury electrode are electrochemical processes strongly influenced both by the pH value and the anions in solution. With decreasing pH, both processes become irreversible, especially in the presence of anions with a negative φ2 potential of the diffusion part of the double layer. In the case of irreversible oxygen reduction, the concept that the rate-controlling step of the electrode process is the acceptance of the first electron with the formation of the superoxide anion, O2-, was substantiated. Oxidation of hydrogen peroxide becomes irreversible at a lower pH value than the reduction of oxygen. The slowest, i.e. rate-controlling step of the electrode process in borate buffers at pH 9-10 is the transfer of the second electron, i.e. oxidation of superoxide to oxygen.


2010 ◽  
Vol 75 (6) ◽  
pp. 653-663 ◽  
Author(s):  
Vinita Sharma ◽  
Krishna D. Gupta

The reduction of indium(III) at dropping mercury electrode in aqueous as well as in 25% ethanol–water media in the presence of pyridine has been studied at a constant ionic strength (0.1 M KNO3) and at 30 and 40 °C. The reduction is diffusion-controlled but the electrode process is quasi-reversible in both media. The reversible half-wave potential values,E1/2r, have been obtained by Gelling’s method. The plot ofE1/2r versus pyridine concentration is a straight line and the number of ligands,j, was determined from the slope. This shows the formation of a single complex. The stability constant has been determined by Lingane’s method. In(III) forms one complex species with composition 1:1, [In(py)]3+. The values of thermodynamic parameters ΔG, ΔHand ΔSof the complexation reaction have also been determined at 30 °C.


2000 ◽  
Vol 65 (6) ◽  
pp. 995-1013 ◽  
Author(s):  
Florinel G. Banica ◽  
Ana Ion

The catalytic hydrogen evolution on the dropping mercury electrode in the presence of Ni(II) and D-penicillamine (Pen) at pH around 6 yields a catalytic hydrogen prewave (CHP) with E1/2 = -1.21 V vs SCE. This wave is similar to the CHP produced by selenocysteine and cysteine described previously. The occurrence of the CHP depends on the formation of the mono(D-penicillamine-N,S)nickel(II) complex whereas bis(D-penicillamine-N,S)nickel(II) complex is inert and has no influence on the CHP electrode process. Although the analogous bis(cysteine) complex is labile, there is strong evidence that it does not take part directly in the CHP process in the Ni(II)-cysteine system. The actual proton donor in the CHP electrode process is the hydronium ion and not the acid component of the buffer. A tentative reaction mechanism was formulated with emphasis on the state of the intermediate hydrogen species. The characteristic pH, nickel ion involvement and the structure of the ligand make the CHP process an attractive model for hydrogen redox reactions catalyzed by [NiFe] hydrogenase.


Electrochem ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 415-426
Author(s):  
Juan Torrent-Burgués

The effect of the adsorption of tetraethylammonium (TEA) cations, which present both ionic and organic characteristics, on the reduction of Cd(II) ions have been studied from dc and ac measurements at the dropping mercury electrode. The resistance to the charge transfer (Rct) and Warburg coefficient (σ) parameters have been determined through impedance measurements. Thus, the global velocity constant has been obtained. The reduction process of Cd(II) in perchloric media is reversible and is affected by the adsorption of TEA cations, especially at high TEA concentrations. Values of E1/2, half wave potential, and DO, diffusion coefficient, obtained from both dc and ac measurements agree. The velocity constants show a decrease as TEA concentration increases, with values ranging from 0.6 to 0.01 cm·s−1. The inhibitory effect of TEA adsorption on the electrode process and the relationship between electrode coverage, θ, and velocity constants, K, using several isotherm equations, have been discussed. The best fit was obtained with the equation K = 0K(1 − θ)a with an a value close to three, indicating a blocking effect and electrostatic repulsion due to TEA.


2018 ◽  
Vol 9 (1) ◽  
pp. 49-56
Author(s):  
Ahmed Hosny Naggar ◽  
Hammed Mohammed Al-Saidi ◽  
Othman Abd El-Moaty Farghaly ◽  
Taher Mohammed Hassan ◽  
Salma Zaidan Mohamed Bortata

The formation constants of Li(I), Mg(II), Sr(II), Ca(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Ba(II), Pb(II), Al(III), Cr(III), Fe(III) and Th(IV) ions with ambroxol hydrochloride (AMB) were calculated using the half-n value. In presence of 0.1 M NaNO3, metal ions such as Zn(II), Cd(II), Ni(II), Cr(III), Li(I), Mg(II) and Al(III) forms three types of metal-ligand complexes (1:1, 1:2 and/or 1:3), while Sr(II) and Co(II) tend to form two types of metal complexes 1:1 and 1:2 (M:L). For ligand protonation constants, two logarithmic association constant values were calculated by the half-n method and are 10.7 and 7.6, respectively. The effect of ionic strength on stability constant of AMP, with different metal ions viz. Fe(III), Th(IV), Al(III), Cr(III) and Cu(II) was studied. Based on relationship between the ionic strength studied values and the 1st stability constants (Log K1H), we can conclude that the stability constants of the formed metal-ligand complex (1:1) were decreased as the ionic strength increased. The stoichiometry of the formed complexes in solution were determined by conductometric method and it is found to be of 1:1, 1:2 and/or 1:3 (M:L) complex species is formed in alkaline media. Also, study the species distribution diagrams of AMP for the calculated mole fraction αML and αML2 were discussed.


Sign in / Sign up

Export Citation Format

Share Document