Modified RNA for the study of enzymes involved in RNA editing, the innate immune response and RNA interference

Author(s):  
Sujiet Puthenveetil ◽  
Landon Whitby ◽  
Olena Maydanovych ◽  
Brittany Haudenschild ◽  
Peter A. Beal
Genes ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 41 ◽  
Author(s):  
Qingde Wang ◽  
Xiaoni Li ◽  
Ruofan Qi ◽  
Timothy Billiar

2020 ◽  
Vol 49 (D1) ◽  
pp. D1012-D1019 ◽  
Author(s):  
Luigi Mansi ◽  
Marco Antonio Tangaro ◽  
Claudio Lo Giudice ◽  
Tiziano Flati ◽  
Eli Kopel ◽  
...  

Abstract RNA editing is a relevant epitranscriptome phenomenon able to increase the transcriptome and proteome diversity of eukaryotic organisms. ADAR mediated RNA editing is widespread in humans in which millions of A-to-I changes modify thousands of primary transcripts. RNA editing has pivotal roles in the regulation of gene expression or modulation of the innate immune response or functioning of several neurotransmitter receptors. Massive transcriptome sequencing has fostered the research in this field. Nonetheless, different aspects of the RNA editing biology are still unknown and need to be elucidated. To support the study of A-to-I RNA editing we have updated our REDIportal catalogue raising its content to about 16 millions of events detected in 9642 human RNAseq samples from the GTEx project by using a dedicated pipeline based on the HPC version of the REDItools software. REDIportal now allows searches at sample level, provides overviews of RNA editing profiles per each RNAseq experiment, implements a Gene View module to look at individual events in their genic context and hosts the CLAIRE database. Starting from this novel version, REDIportal will start collecting non-human RNA editing changes for comparative genomics investigations. The database is freely available at http://srv00.recas.ba.infn.it/atlas/index.html.


Author(s):  
Ketty Sinigaglia ◽  
Dagmara Wiatrek ◽  
Anzer Khan ◽  
David Michalik ◽  
Nagraj Sambrani ◽  
...  

2010 ◽  
Vol 13 (4) ◽  
pp. 622-628 ◽  
Author(s):  
Ikuo Hirono ◽  
Fernand F. Fagutao ◽  
Hidehiro Kondo ◽  
Takashi Aoki

2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


Pneumologie ◽  
2013 ◽  
Vol 67 (S 01) ◽  
Author(s):  
P Pfeifer ◽  
M Voss ◽  
B Wonnenberg ◽  
M Bischoff ◽  
F Langer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document