scholarly journals REDIportal: millions of novel A-to-I RNA editing events from thousands of RNAseq experiments

2020 ◽  
Vol 49 (D1) ◽  
pp. D1012-D1019 ◽  
Author(s):  
Luigi Mansi ◽  
Marco Antonio Tangaro ◽  
Claudio Lo Giudice ◽  
Tiziano Flati ◽  
Eli Kopel ◽  
...  

Abstract RNA editing is a relevant epitranscriptome phenomenon able to increase the transcriptome and proteome diversity of eukaryotic organisms. ADAR mediated RNA editing is widespread in humans in which millions of A-to-I changes modify thousands of primary transcripts. RNA editing has pivotal roles in the regulation of gene expression or modulation of the innate immune response or functioning of several neurotransmitter receptors. Massive transcriptome sequencing has fostered the research in this field. Nonetheless, different aspects of the RNA editing biology are still unknown and need to be elucidated. To support the study of A-to-I RNA editing we have updated our REDIportal catalogue raising its content to about 16 millions of events detected in 9642 human RNAseq samples from the GTEx project by using a dedicated pipeline based on the HPC version of the REDItools software. REDIportal now allows searches at sample level, provides overviews of RNA editing profiles per each RNAseq experiment, implements a Gene View module to look at individual events in their genic context and hosts the CLAIRE database. Starting from this novel version, REDIportal will start collecting non-human RNA editing changes for comparative genomics investigations. The database is freely available at http://srv00.recas.ba.infn.it/atlas/index.html.

Genes ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 41 ◽  
Author(s):  
Qingde Wang ◽  
Xiaoni Li ◽  
Ruofan Qi ◽  
Timothy Billiar

2008 ◽  
Vol 295 (2) ◽  
pp. C313-C323 ◽  
Author(s):  
Angelia Lockett ◽  
Mark G. Goebl ◽  
Maureen A. Harrington

The transcription factor NF-κB is an essential regulator of the innate immune response that functions as the first line of defense against infections. Activation of the innate immune response by bacterial lipopolysaccharide (LPS) triggers production of tumor necrosis factor-α (TNF-α) followed by interleukin-1 (IL-1). The IL-1 receptor associated kinase-1 (IRAK-1) is an integral component of the LPS, TNF-α, and IL-1 signaling pathways that regulate NF-κB. Thus we hypothesized that IRAK-1 coordinates cellular NF-κB responses to LPS, TNF-α, and IL-1. In contrast to TNF-α where IRAK-1 subcellular localization does not change, treatment with LPS or IL-1 leads to a loss in cytoplasmic IRAK-1 with a coordinate increase in plasma membrane associated modified IRAK-1. In fibroblasts lacking the type 1 TNF-α receptor (TNF R1), IRAK-1 turnover is altered and modification of IRAK-1 in the plasma membrane is decreased in response to LPS and IL-1, respectively. When NF-κB controlled gene expression is measured, fibroblasts lacking TNF R1 are hyperresponsive to LPS, whereas a more variable response to IL-1 is seen. Further analysis of the LPS response revealed that plasma membrane-associated IRAK-1 is found in Toll 4, IL-1, and TNF R1-containing complexes. The data presented herein suggest a model whereby the TNF R1-IRAK-1 interaction integrates the cellular response to LPS, TNF-α, and IL-1, culminating in a cell poised to activate TNF-α-dependent NF-κB controlled gene expression. In the absence of TNF R1-dependent events, exposure to LPS or IL-1 leads to hyperactivation of the inflammatory response.


2008 ◽  
Vol 76 (5) ◽  
pp. 1897-1907 ◽  
Author(s):  
Alcina V. Carvalho Neta ◽  
Ana P. R. Stynen ◽  
Tatiane A. Paixão ◽  
Karina L. Miranda ◽  
Fabiana L. Silva ◽  
...  

ABSTRACT Brucellosis is still a widespread zoonotic disease. Very little is known about the interaction between Brucella abortus and trophoblastic cells, which is essential for better understanding the pathogenesis of the Brucella-induced placentitis and abortion, a key event for transmission of the disease. The goal of this study was to evaluate the profile of gene expression by bovine trophoblastic cells during infection with B. abortus. Explants of chorioallantoic membranes were inoculated with B. abortus strain 2308. Microarray analysis was performed at 4 h after infection, and expression of cytokines and chemokines by trophoblastic cells was assessed by real-time reverse transcription-PCR at 6 and 12 h after inoculation. In addition, cytokine and chemokine expression in placentomes from experimentally infected cows was evaluated. Expression of proinflammatory genes by trophoblastic cells was suppressed at 4 h after inoculation, whereas a significant upregulation of CXC chemokines, namely, CXCL6 (GCP-2) and CXCL8 (interleukin 8), was observed at 12 but not at 6 h after inoculation. Placentomes of experimentally infected cows had a similar profile of chemokine expression, with upregulation of CXCL6 and CXCL8. Our data indicate that B. abortus modulates the innate immune response by trophoblastic cells, suppressing the expression of proinflammatory mediators during the early stages of infection that is followed by a delayed and mild expression of proinflammatory chemokines, which is similar to the profile of chemokine expression in the placentomes of experimentally infected cows. This trophoblastic response is likely to contribute to the pathogenesis of B. abortus-induced placentitis.


2016 ◽  
Vol 90 (23) ◽  
pp. 10823-10843 ◽  
Author(s):  
Nicole Arnold ◽  
Thomas Girke ◽  
Suhas Sureshchandra ◽  
Ilhem Messaoudi

ABSTRACTPrimary infection with varicella-zoster virus (VZV), a neurotropic alphaherpesvirus, results in varicella. VZV establishes latency in the sensory ganglia and can reactivate later in life to cause herpes zoster. The relationship between VZV and its host during acute infection in the sensory ganglia is not well understood due to limited access to clinical specimens. Intrabronchial inoculation of rhesus macaques with simian varicella virus (SVV) recapitulates the hallmarks of VZV infection in humans. We leveraged this animal model to characterize the host-pathogen interactions in the ganglia during both acute and latent infection by measuring both viral and host transcriptomes on days postinfection (dpi) 3, 7, 10, 14, and 100. SVV DNA and transcripts were detected in sensory ganglia 3 dpi, before the appearance of rash. CD4 and CD8 T cells were also detected in the sensory ganglia 3 dpi. Moreover, lung-resident T cells isolated from the same animals 3 dpi also harbored SVV DNA and transcripts, suggesting that T cells may be responsible for trafficking SVV to the ganglia. Transcriptome sequencing (RNA-Seq) analysis showed that cessation of viral transcription 7 dpi coincides with a robust antiviral innate immune response in the ganglia. Interestingly, a significant number of genes that play a critical role in nervous system development and function remained downregulated into latency. These studies provide novel insights into host-pathogen interactions in the sensory ganglia during acute varicella and demonstrate that SVV infection results in profound and sustained changes in neuronal gene expression.IMPORTANCEMany aspects of VZV infection of sensory ganglia remain poorly understood, due to limited access to human specimens and the fact that VZV is strictly a human virus. Infection of rhesus macaques with simian varicella virus (SVV), a homolog of VZV, provides a robust model of the human disease. Using this model, we show that SVV reaches the ganglia early after infection, most likely by T cells, and that the induction of a robust innate immune response correlates with cessation of virus transcription. We also report significant changes in the expression of genes that play an important role in neuronal function. Importantly, these changes persist long after viral replication ceases. Given the homology between SVV and VZV, and the genetic and physiological similarities between rhesus macaques and humans, our results provide novel insight into the interactions between VZV and its human host and explain some of the neurological consequences of VZV infection.


2021 ◽  
Author(s):  
Nathan A. Krump ◽  
Ranran Wang ◽  
Wei Liu ◽  
June F. Yang ◽  
Tongcui Ma ◽  
...  

Merkel cell polyomavirus (MCPyV) infects most of the human population asymptomatically, but in rare cases leads to a highly aggressive skin cancer called Merkel cell carcinoma (MCC). MCC incidence is much higher in aging and immunocompromised populations. The epidemiology of MCC suggests that dysbiosis between the host immune response and the MCPyV infectious cycle could contribute to the development of MCPyV-associated MCC. Insufficient restriction of MCPyV by normal cellular processes, for example, could promote the incidental oncogenic MCPyV integration events and/or entry into the original cell of MCC. Progress towards understanding MCPyV biology has been hindered by its narrow cellular tropism. Our discovery that primary human dermal fibroblasts (HDFs) support MCPyV infection has made it possible to closely model cellular responses to different stages of the infectious cycle. The present study reveals that the onset of MCPyV replication and early gene expression induces an inflammatory cytokine and interferon stimulated gene (ISG) response. The cGAS-STING pathway, in coordination with NF-κB, mediates induction of this innate immune gene expression program. Further, silencing of cGAS or NF-κB pathway factors led to elevated MCPyV replication. We also discovered that the PYHIN protein IFI16 localizes to MCPyV replication centers, but does not contribute to the induction of ISGs. Instead, IFI16 upregulates inflammatory cytokines in response to MCPyV infection by an alternative mechanism. The work described herein establishes a foundation for exploring how changes to the skin microenvironment induced by aging or immunodeficiency might alter the fate of MCPyV and its host cell to encourage carcinogenesis. Importance MCC has a high rate of mortality and an increasing incidence. Immune-checkpoint therapies have improved the prognosis of patients with metastatic MCC. Still, a significant proportion of the patients fail to respond to immune-checkpoint therapies or have a medical need for iatrogenic immune-suppression. A greater understanding of MCPyV biology could inform targeted therapies for MCPyV-associated MCC. Moreover, cellular events preceding MCC oncogenesis remain largely unknown. The present study aims to explore how MCPyV interfaces with innate immunity during its infectious cycle. We describe how MCPyV replication and/or transcription elicit an innate immune response via cGAS-STING, NF-κB, and IFI16. We also explore the impacts of this response on MCPyV replication. Our findings illustrate how healthy cellular conditions may allow low-level infection that evades immune destruction until highly active replication is restricted by host responses. Conversely, pathologic conditions could result in unbridled MCPyV replication that licenses MCC tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document