Post-Stimulation Effect of Electroacupuncture at Yintang (EX-HN3) and GV20 on cerebral functional regions in healthy volunteers: A resting functional MRI study

2012 ◽  
Vol 30 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Yu Zheng ◽  
Shanshan Qu ◽  
Na Wang ◽  
Limin Liu ◽  
Guanzhong Zhang ◽  
...  

Objective The aim of the present work was to observe the activation/deactivation of cerebral functional regions after electroacupuncture (EA) at Yintang (EX-HN3) and GV20 by functional MRI (fMRI). Design A total of 12 healthy volunteers were stimulated by EA at Yintang and GV20 for 30 min. Resting-state fMRI scans were performed before EA, and at 5 and 15 min after needle removal. Statistical parametric mapping was used to preprocess initial data, and regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) were analysed. Results ReHo at 5 min post stimulation showed increases in the left temporal lobe and cerebellum and decreases in the left parietal lobe, occipital lobe and right precuneus. At 15 min post stimulation, ReHo showed increases in the left fusiform gyrus; lingual gyrus; middle temporal gyrus; postcentral gyrus; limbic lobe; cingulate gyrus; paracentral lobule; cerebellum, posterior lobe, declive; right cuneus and cerebellum, anterior lobe, culmen. It also showed decreases in the left frontal lobe, parietal lobe, right temporal lobe, frontal lobe, parietal lobe and right cingulate gyrus. ALFF at 5 min post stimulation showed increases in the right temporal lobe, but decreases in the right limbic lobe and posterior cingulate gyrus. At 15 min post stimulation ALFF showed increases in the left frontal lobe, parietal lobe, occipital lobe, right temporal lobe, parietal lobe, occipital lobe and cerebellum, but decreases in the left frontal lobe, anterior cingulate gyrus, right frontal lobe and posterior cingulate gyrus. Conclusions After EA stimulation at Yintang and GV20, which are associated with psychiatric disorder treatments, changes were localised in the frontal lobe, cingulate gyrus and cerebellum. Changes were higher in number and intensity at 15 min than at 5 min after needle removal, demonstrating lasting and strong after-effects of EA on cerebral functional regions.

Author(s):  
Oleksandr Zlobin

The aim of the study was to determine the stable complexes of neuropsychiatric symptoms inherent in patients with vascular dementia with different localization of brain damage. 157 people with a diagnosis of vascular dementia were examined. Group 1 included 22 people with localization of the pathological process in the frontal lobe, group 2 — 18 patients with lesions of the temporal lobe, group 3 — 17 patients with lesions of the parietal lobe, group 4 — 15 patients with lesions of the occipital lobe, group 5 — 68 people with total defeat. All contingents are post-stroke patients over 50 years old, the average age is 68.12 years. Research methods: clinical-psychopathological, clinical-instrumental, experimental-psychological, anamnestic, clinical-statistical. The stable complexes (clusters) of neuropsychiatric symptoms inherent in patients with vascular dementia with different localization of brain lesions were determined. Revealing the following stable associations “localization — cluster”: frontal lobe — subpsychotic cluster (delusion — hallucinations — euphoria — agitation — depression); temporal lobe — asthenoanxiotic cluster (anxiety — irritability — agitation — sleep disturbances — apathy); parietal lobe — excitable-depressive cluster (depression — agitation — irritability — sleep disturbances); occipital lobe — affectocentric cluster (anxiety — depression — agitation — irritability); total defeat — asthenopathoideatoric cluster (apathy — irritability — agitation — anxiety — delirium). The identification of the association allows one to confidently determine the nature of the expected neuropsychiatric symptoms immediately after obtaining neuroimaging data regarding the localization of the lesion, which creates optimal conditions for the timely formation of a program of appropriate therapeutic interventions. Key words: vascular dementia, psychopathology, affective symptoms, neuropsychiatric symptoms, geriatric psychiatry


2021 ◽  
pp. 1-10
Author(s):  
Ichiyo Shibahara ◽  
Ryuta Saito ◽  
Masayuki Kanamori ◽  
Yukihiko Sonoda ◽  
Sumito Sato ◽  
...  

OBJECTIVE The parietooccipital fissure is an anatomical landmark that divides the temporal, occipital, and parietal lobes. More than 40% of gliomas are located in these three lobes, and the temporal lobe is the most common location. The parietooccipital fissure is located just posterior to the medial temporal lobe, but little is known about the clinical significance of this fissure in gliomas. The authors investigated the anatomical correlations between the parietooccipital fissure and posterior medial temporal gliomas to reveal the radiological features and unique invasion patterns of these gliomas. METHODS The authors retrospectively reviewed records of all posterior medial temporal glioma patients treated at their institutions and examined the parietooccipital fissure. To clarify how the surrounding structures were invaded in each case, the authors categorized tumor invasion as being toward the parietal lobe, occipital lobe, isthmus of the cingulate gyrus, insula/basal ganglia, or splenium of the corpus callosum. DSI Studio was used to visualize the fiber tractography running through the posterior medial temporal lobe. RESULTS Twenty-four patients with posterior medial temporal gliomas were identified. All patients presented with a parietooccipital fissure as an uninterrupted straight sulcus and as the posterior border of the tumor. Invasion direction was toward the parietal lobe in 13 patients, the occipital lobe in 4 patients, the isthmus of the cingulate gyrus in 19 patients, the insula/basal ganglia in 3 patients, and the splenium of the corpus callosum in 8 patients. Although the isthmus of the cingulate gyrus and the occipital lobe are located just posterior to the posterior medial temporal lobe, there was a significantly greater preponderance of invasion toward the isthmus of the cingulate gyrus than toward the occipital lobe (p = 0.00030, McNemar test). Based on Schramm’s classification for the medial temporal tumors, 4 patients had type A and 20 patients had type D tumors. The parietooccipital fissure determined the posterior border of the tumors, resulting in a unique and identical radiological feature. Diffusion spectrum imaging (DSI) tractography indicated that the fibers running through the posterior medial temporal lobe toward the occipital lobe had to detour laterally around the bottom of the parietooccipital fissure. CONCLUSIONS Posterior medial temporal gliomas present identical invasion patterns, resulting in unique radiological features that are strongly affected by the parietooccipital fissure. The parietooccipital fissure is a key anatomical landmark for understanding the complex infiltrating architecture of posterior medial temporal gliomas.


2022 ◽  
Author(s):  
Xu Yang ◽  
Zhe-Yuan Li ◽  
Li-Hong Si ◽  
Bo Shen ◽  
Xia Ling

Abstract The study aimed to investigate resting-state functional brain activity alterations in patients with definite vestibular migraine (dVM). Seventeen patients with dVM, 8 patients with migraine, 17 health controls (HCs) were recruited. The amplitude of low frequency fluctuation (ALFF), fractional ALFF (fALFF) and regional homogeneity (ReHo) were calculated to observe the changes in spontaneous brain activity. Then brain regions with altered fALFF were selected for seed-based functional connectivity analysis. Compared with HCs, VM patients showed significantly increased ALFF values in the right temporal lobe (Cluster size = 91 voxels, P=0.002, FWE corrected), and significantly increased ReHo values in the right superior temporal gyrus (STG), middle temporal gyrus (MTG) and inferior temporal gyrus (ITG) (Cluster size = 136 voxels, P=0.013, FWE corrected). Compared with patients with migraine, patients with VM showed significantly increased fALFF values in the right parietal lobe (Cluster size = 43 voxels, P=0.011, FWE corrected) and right frontal lobe (Cluster size =36 voxels, P=0.026, FWE corrected), significantly increased ReHo values in the right thalamus (Cluster size = 92 voxels, P=0.043, FWE corrected). Our findings documented that patients with VM showed enhanced spontaneous functional activity in the right temporal lobe (STG, MTG, and ITG) compared with HCs, and increased spontaneous activity in the right parietal lobe-frontal lobe-thalamus compared with patients with migraine. Patients with VM and migraine both had altered brain function, but the regions involved are different.


1997 ◽  
Vol 86 (3) ◽  
pp. 505-510 ◽  
Author(s):  
Christopher E. Wolfla ◽  
Thomas G. Luerssen ◽  
Robin M. Bowman

✓ A porcine model of regional intracranial pressure was used to compare regional brain tissue pressure (RBTP) changes during expansion of an extradural temporal mass lesion. Measurements of RBTP were obtained by placing fiberoptic intraparenchymal pressure monitors in the right and left frontal lobes (RF and LF), right and left temporal lobes (RT and LT), midbrain (MB), and cerebellum (CB). During expansion of the right temporal mass, significant RBTP gradients developed in a reproducible pattern: RT > LF = LT > RF > MB > CB. These gradients appeared early, widened as the volume of the mass increased, and persisted for the entire duration of the experiment. The study indicates that RBTP gradients develop in the presence of an extradural temporal mass lesion. The highest RBTP was recorded in the ipsilateral temporal lobe, whereas the next highest was recorded in the contralateral frontal lobe. The RBTP that was measured in either frontal lobe underestimated the temporal RBTP. These results indicated that if a frontal intraparenchymal pressure monitor is used in a patient with temporal lobe pathology, the monitor should be placed on the contralateral side and a lower threshold for therapy of increased intracranial pressure should be adopted. Furthermore, this study provides further evidence that reliance on a single frontal intraparenchymal pressure monitor may not detect all areas of elevated RBTP.


2021 ◽  
pp. 155005942110636
Author(s):  
Francesco Carlo Morabito ◽  
Cosimo Ieracitano ◽  
Nadia Mammone

An explainable Artificial Intelligence (xAI) approach is proposed to longitudinally monitor subjects affected by Mild Cognitive Impairment (MCI) by using high-density electroencephalography (HD-EEG). To this end, a group of MCI patients was enrolled at IRCCS Centro Neurolesi Bonino Pulejo of Messina (Italy) within a follow-up protocol that included two evaluations steps: T0 (first evaluation) and T1 (three months later). At T1, four MCI patients resulted converted to Alzheimer’s Disease (AD) and were included in the analysis as the goal of this work was to use xAI to detect individual changes in EEGs possibly related to the degeneration from MCI to AD. The proposed methodology consists in mapping segments of HD-EEG into channel-frequency maps by means of the power spectral density. Such maps are used as input to a Convolutional Neural Network (CNN), trained to label the maps as “T0” (MCI state) or “T1” (AD state). Experimental results reported high intra-subject classification performance (accuracy rate up to 98.97% (95% confidence interval: 98.68–99.26)). Subsequently, the explainability of the proposed CNN is explored via a Grad-CAM approach. The procedure allowed to detect which EEG-channels (i.e., head region) and range of frequencies (i.e., sub-bands) resulted more active in the progression to AD. The xAI analysis showed that the main information is included in the delta sub-band and that, limited to the analyzed dataset, the highest relevant areas are: the left-temporal and central-frontal lobe for Sb01, the parietal lobe for Sb02, the left-frontal lobe for Sb03 and the left-frontotemporal region for Sb04.


2010 ◽  
Vol 23 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Shou-Hung Huang ◽  
Shang-Ying Tsai ◽  
Jung-Lung Hsu ◽  
Yi-Lin Huang

ABSTRACTBackground: Few studies have examined alterations of the brain in elderly bipolar patients. As late-onset mania is associated with increased cerebrovascular morbidity and neurological damage compared with typical/early-onset mania, we investigated differences in the volume of various cortical regions between elderly patients with early-onset versus late-onset mania.Methods: We recruited 44 bipolar patients aged over 60 years, who underwent volumetric magnetic resonance imaging at 1.5 T. The analytic method is based on the hidden Markov random field model with an expectation-maximization algorithm. We determined the volume of each cortical region as a percentage of the total intracranial volume. The cutoff age for defining early versus late onset was 45 years.Results: The study participants consisted of 25 patients with early-onset mania and 19 patients with late-onset mania; their mean ages were 65.7 years and 62.8 years, respectively. The demographic variables of the two groups were comparable. The volumes of the left caudate nucleus (p = 0.022) and left middle frontal gyrus (p = 0.013) were significantly greater and that of the right posterior cingulate gyrus (p = 0.019) was significantly smaller in the late-onset group. More patients with late-onset mania had comorbid cerebrovascular disease (p = 0.072).Conclusions: The right posterior cingulate gyrus is smaller and the left caudate nucleus and left middle frontal gyrus are larger in patients with late-onset mania compared with those with early-onset mania. Volumetric change in brain regions may vary in elderly bipolar patients with early and late-onset mania.


2018 ◽  
Vol 6 (9) ◽  
pp. 1697-1698 ◽  
Author(s):  
Charmaine Zahra ◽  
Reuben Grech

BACKGROUND: Multinodular and Vacuolating Neuronal Tumor (MVNT) of the cerebrum is a benign lesion described recently in the WHO CNS tumours in 2016. Although this tumour is uncommon, clinicians should be acquainted with the possible presentation and imaging findings. CASE REPORT: We present a case of a young gentleman whose only symptom was absence seizures. Brain imaging showed lesions, compatible with this rare diagnosis. CONCLUSION: Our description of imaging findings on MRI highlights the characteristic cystic appearances of note in the right occipital lobe, in contrast to the temporal lobe as the predominant location found in previous cases.


1991 ◽  
Vol 4 (3) ◽  
pp. 167-179 ◽  
Author(s):  
Alan J. Parkin ◽  
Caroline Barry

We describe a right-handed patient who suffered a ruptured aneurysm of the anterior communicating artery (ACoA) which was clipped successfully. Computerized tomography indicated a low density area in the genu of the corpus callosum and the infero-lateral aspect of the left frontal lobe. On recovery the patient's most notable deficit was the “alien hand sign” whereby the left hand would frequently interfere with the actions of the right hand. Problems in response initiation were also evident. There was significant memory loss and performance was impaired on some tests of frontal lobe function. Discussion centres on the functional locus of the alien hand sign but other aspects of the patient's deficits are also considered.


2021 ◽  
Vol 05 (03) ◽  
pp. 1-1
Author(s):  
Nasim Foroughi ◽  
◽  
Brooke Donnelly ◽  
Mark Williams ◽  
Sloane Madden ◽  
...  

To compare neural responses to high and low-energy food images in patients with Anorexia Nervosa (AN) and an age-matched Healthy Control (HC) group. 25 adolescents with AN and 21 HCs completed a diagnostic interview, self-report questionnaires and fMRI, during which they viewed food images evoking responses of disgust, happiness, or fear. Following whole brain analyses, neural responses in six regions of interest were examined in a series of between-group contrasts, across the three emotive categories. Compared to the HCs, people in the AN group showed increased responsivity to high-energy (1) disgust images in temporal lobe, frontal lobe, insula, and cerebellum anterior lobe; (2) fear images in occipital lobe, temporal, and frontal lobes and (3) happy images in frontal lobe, cerebellum anterior lobe, sub-lobar, and cuneus. More activity was observed in response to low-energy (1) disgust food images in the temporal lobe, frontal lobe, insula, cerebellum anterior and posterior lobes, parietal lobe, occipital lobe, and limbic lobe; (2) and happy food images in frontal lobes. Few correlations were found with levels of eating disorder symptoms. The findings highlight the emotional impact of diverse high and low-energy foods for people with AN. People without AN may have a better capacity to filter salient from non-salient information relating to the current task when viewing high energy foods. In summary, for those with AN, it would seem their ability to efficiently ‘sort-out’ information (especially information pertaining to disorder-relevant stimuli such as food images) to complete the task at hand, may be diminished.


2018 ◽  
Author(s):  
Hamel Patel ◽  
Richard J.B Dobson ◽  
Stephen J Newhouse

ABSTRACTBackgroundMicroarray technologies have identified imbalances in the expression of specific genes and biological pathways in Alzheimer’s disease (AD) brains. However, there is a lack of reproducibility across individual AD studies, and many related neurodegenerative and mental health disorders exhibit similar perturbations. We are yet to identify robust transcriptomic changes specific to AD brains.Methods and ResultsTwenty-two AD, eight Schizophrenia, five Bipolar Disorder, four Huntington's disease, two Major Depressive Disorder and one Parkinson’s disease dataset totalling 2667 samples and mapping to four different brain regions (Temporal lobe, Frontal lobe, Parietal lobe and Cerebellum) were analysed. Differential expression analysis was performed independently in each dataset, followed by meta-analysis using a combining p-value method known as Adaptively Weighted with One-sided Correction. This identified 323, 435, 1023 and 828 differentially expressed genes specific to the AD temporal lobe, frontal lobe, parietal lobe and cerebellum brain regions respectively. Seven of these genes were consistently perturbed across all AD brain regions with SPCS1 gene expression pattern replicating in RNA-seq data. A further nineteen genes were perturbed specifically in AD brain regions affected by both plaques and tangles, suggesting possible involvement in AD neuropathology. Biological pathways involved in the “metabolism of proteins” and viral components were significantly enriched across AD brains.ConclusionThis study solely relied on publicly available microarray data, which too often lacks appropriate phenotypic information for robust data analysis and needs to be addressed by future studies. Nevertheless, with the information available, we were able to identify specific transcriptomic changes in AD brains which could make a significant contribution towards the understanding of AD disease mechanisms and may also provide new therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document