AB0976 Achilles Tendon Injury and Complex Patellar for Overuse in Soccer Players: Ultrasound Investigation before and after The Match

2016 ◽  
Vol 75 (Suppl 2) ◽  
pp. 1235.1-1235
Author(s):  
S. Tropea ◽  
C. Trovato ◽  
A. Tropea
Author(s):  
Jonathan Kenneth Sinclair ◽  
Lindsay Bottoms

AbstractRecent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge.Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed.The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females.This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.


Author(s):  
Ermanno Rampinini ◽  
Federico Donghi ◽  
Marco Martin ◽  
Andrea Bosio ◽  
Marco Riggio ◽  
...  

AbstractIn March 2020, the COVID-19 pandemic forced most activities in Italy, including soccer, to cease. During lockdown, players could only train at home, with limited evidence regarding the effect of this period. Therefore, this study aimed to investigate the effect of COVID-19 lockdown on professional soccer players’ physical performance. Aerobic fitness and vertical jump were assessed before and after four periods in two different seasons: COVID-19 lockdown, competitive period before lockdown, competitive period and summer break of the 2016–2017 season. Linear mixed models were used to examine within-period changes and between-period differences in changes observed during COVID-19 lockdown and the three other periods. Within-period changes in aerobic fitness showed a significant improvement following COVID-19 lockdown (p<0.001) and a significant decline during summer break (p<0.001). Between-period differences were significant in the comparison of COVID-19 lockdown with both the competitive 2019–2020 season (p<0.01) and summer break (p<0.001). For the vertical jump, only the between-period comparison revealed significant differences as the changes associated with COVID-19 lockdown were worse than those of the two competitive periods, for both absolute (p<0.05; p<0.001) and relative peak power (p<0.01; p<0.001). Home-based training during lockdown was effective to improve aerobic fitness, although it did not allow players to maintain their competitive period’s power levels.


2011 ◽  
Vol 45 (4) ◽  
pp. 324-324 ◽  
Author(s):  
M. Hagglund ◽  
M. Walden ◽  
J. Zwerver ◽  
J. Ekstrand

1999 ◽  
Vol 27 (3) ◽  
pp. 363-369 ◽  
Author(s):  
Christopher A. Kurtz ◽  
Thomas G. Loebig ◽  
Donald D. Anderson ◽  
Patrick J. DeMeo ◽  
Phil G. Campbell

2017 ◽  
Vol 32 (2) ◽  
pp. 125-139 ◽  
Author(s):  
Mariana de Castro Nicodemo ◽  
Lia Renó das Neves ◽  
Josafá Carvalho Aguiar ◽  
Flaviane de Souza Brito ◽  
Isabelle Ferreira ◽  
...  

2015 ◽  
Vol 27 (1) ◽  
pp. 34-38
Author(s):  
Thomas D. O’Brien

Children develop lower levels of muscle force, and at slower rates, than adults. While strength training in children is expected to reduce this differential, a synchronous adaptation in the tendon must be achieved to ensure forces continue to be transmitted to the skeleton with efficiency while minimizing the risk of strainrelated tendon injury. We hypothesized that resistance training (RT) would alter tendon mechanical properties in children concomitantly with changes in force production characteristics. Twenty prepubertal children (8.9 ± 0.3 years) were equally divided into control (nontraining) and experimental (training) groups. The training group completed a 10-week RT intervention consisting of 2-3 sets of 8-15 plantar flexion contractions performed twice weekly on a recumbent calf raise machine. Achilles tendon properties (cross-sectional area, elongation, stress, strain, stiffness and Young’s modulus), electromechanical delay (EMD; time between the onset of muscle activity and force), rate of force development (RFD; slope of the force-time curve) and rate of EMG increase (REI; slope of the EMG-time curve) were measured before and after RT. Tendon stiffness and Young’s modulus increased significantly after RT in the experimental group only (~29% and ~25%, respectively); all other tendon properties were not significantly altered, although there were mean decreases in both peak tendon strain and strain at a given force level (14% and 24%, respectively, n.s) which may have implications for tendon injury risk and muscle fiber mechanics. A ~13% decrease in EMD was found after RT for the experimental group which paralleled the increase in tendon stiffness (r = −0.59), however RFD and REI were unchanged. The present data show that the Achilles tendon adapts to RT in prepubertal children and is paralleled by a change in EMD, although the magnitude of this change did not appear to be sufficient to influence RFD. These findings are of potential importance within the context of the efficiency and execution of movement.


Author(s):  
Marcin Maciejczyk ◽  
Renata Błyszczuk ◽  
Aleksander Drwal ◽  
Beata Nowak ◽  
Marek Strzała

The aim of the study was to determine the effects of short-term (4 weeks, twice a week: 8 sessions) plyometric training on agility, jump, and repeated sprint performance in female soccer players. The study comprised 17 females performing this sports discipline. The players were randomly divided into two groups: with plyometric training (PLY) and the control (CON). All players followed the same training program, but the PLY group also performed plyometric exercises. Tests used to evaluate physical performance were carried out immediately before and after PLY. After implementing the short PLY training, significant improvement in jump performance (squat jump: p = 0.04, ES = 0.48, countermovement jump: p = 0.009, ES = 0.42) and agility (p = 0.003, ES = 0.7) was noted in the PLY group. In the CON group, no significant (p > 0.05) changes in physical performance were observed. In contrast, PLY did not improve repeated sprint performance (p > 0.05) among female soccer players. In our research, it was shown that PLY can also be effective when performed for only 4 weeks instead of the 6–12 weeks typically applied.


2020 ◽  
Vol 112 (5) ◽  
pp. S40
Author(s):  
James Clemmons ◽  
Jared Watson ◽  
Jeremy Watson ◽  
Onaje Artist ◽  
Robert Wilson

2019 ◽  
Vol 11 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Iver Cristi-Sánchez ◽  
Claudia Danes-Daetz ◽  
Alejandro Neira ◽  
Wilson Ferrada ◽  
Roberto Yáñez Díaz ◽  
...  

Background: Tendon overuse injuries are an issue in elite footballers (soccer players) and may affect tendon function. Achilles and patellar tendinopathy are the most frequent pathologies. Tendon stiffness, the relationship between the force applied to a tendon and the displacement exerted, may help represent tendon function. Stiffness is affected by training and pathology. Nevertheless, information regarding this mechanical property is lacking for elite soccer athletes. Hypothesis: Achilles and patellar tendon stiffness assessed using myotonometric measurements will be greater in elite soccer athletes than in control participants. Study Design: Cross-sectional study. Level of Evidence: Level 4. Methods: Forty-nine elite soccer athletes and 49 control participants were evaluated during the 2017 preseason. A handheld device was used to measure Achilles and patellar tendon stiffness. Dominant and nondominant limbs were assessed for both groups. Results: A significantly stiffer patellar tendon was found for both the dominant and the nondominant limb in the elite soccer athletes compared with the control group. Nevertheless, no differences were found in Achilles tendon stiffness between groups. When comparing between playing positions in soccer athletes, no significant differences were found for both tendons. Conclusion: Greater patellar tendon stiffness may be related to an improvement in force transmission during muscle contraction. On the other hand, it seems that after years of professional training, Achilles tendon stiffness does not change, conserving the storing-releasing function of elastic energy. The nonsignificant differences between positions may be attributable to the years of homogeneous training that the players underwent. Clinical Relevance: The present study shows another technique for measuring mechanical properties of tendons in soccer athletes that could be used in clinical settings. In the future, this technique may help clinicians choose the best exercise protocol to address impairments in tendon stiffness.


2010 ◽  
Vol 25 (1) ◽  
pp. 49-52 ◽  
Author(s):  
A. I. Aiyegbusi ◽  
F. I. O. Duru ◽  
C. C. Anunobi ◽  
C. C. Noronha ◽  
A. O. Okanlawon

Sign in / Sign up

Export Citation Format

Share Document