scholarly journals P120 IL-23 receptor signaling is important during physiological bone remodeling and radial bone growth through regulation of osteoblast differentiation

Author(s):  
W Razawy ◽  
M Schreuders-koedam ◽  
P Asmawidjaja ◽  
A Mus ◽  
H Den Braanker ◽  
...  
1986 ◽  
Vol 5 (2) ◽  
pp. 187-199
Author(s):  
D. J. Simmons ◽  
J. Wood ◽  
M. Wajnrajch ◽  
J. Poland ◽  
J. E. Russell

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Fabrizio Accardi ◽  
Denise Toscani ◽  
Marina Bolzoni ◽  
Benedetta Dalla Palma ◽  
Franco Aversa ◽  
...  

Multiple myeloma (MM) is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI) bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease.


1983 ◽  
Vol 62 (10) ◽  
pp. 2083-2087 ◽  
Author(s):  
EDMUND D. PELLEGRINO ◽  
ROBERT M. BILTZ

2021 ◽  
Author(s):  
Rafael Coutinho Mello-Machado ◽  
Suelen Cristina Sartoretto ◽  
Jose Mauro Granjeiro ◽  
José Albuquerque Calasans-Maia ◽  
Marcelo Jose Guedes Pinheiro Uzeda ◽  
...  

Abstract This study aimed to investigate in vivo the hypothesis that the osseodensification technique, through a wider osteotomy, produce healing chambers at the implant-bone interface with no impact on primary stability osseointegration in low-density bone. Twenty implants (3.5 x 10 mm) presenting nanohydroxyapatite (nHA) surface were inserted in the ilium of ten sheep, after preparation of a 2.7-mm wide implant bed with conventional subtractive drilling (SCD) or a 3.8-mm wide implant bed with an osseodensification bur system (OBS) (n = 5/group/period). The final insertion torque (IT) and implant stability quotient (ISQ) evaluated the primary implant stability. After 14 and 28 days, the bone samples containing the implants were processed for histological and histomorphometric evaluation of bone implant contact (BIC) and bone area fraction occupancy (BAFO). No significant differences occurred between the implant bed preparations regarding IT and ISQ (P > 0.05). Histological analysis showed bone remodeling, and bone growth in all samples with no inflammatory infiltrate. BIC values were higher for SCD after 14 and 28 days (p < 0.05), however BAFO values were similar on both groups (p > 0.05). It was possible to conclude that the osseodensification technique allowed a wider implant bed preparation with no prejudice on primary stability and bone remodeling.


2015 ◽  
Vol 762 ◽  
pp. 150-157 ◽  
Author(s):  
Kenjiro Tanaka ◽  
Takao Hirai ◽  
Yukiko Ishibashi ◽  
Nobuo Izumo ◽  
Akifumi Togari

1986 ◽  
Vol 5 (2) ◽  
pp. 187-199 ◽  
Author(s):  
D. J. Simmons ◽  
J. Wood ◽  
M. Wajnrajch ◽  
J. Poland ◽  
J. E. Russell

2021 ◽  
Vol 22 (15) ◽  
pp. 8297
Author(s):  
Sinan Şen ◽  
Christopher J. Lux ◽  
Ralf Erber

Background: Induced tooth movement during orthodontic therapy requires mechano-induced bone remodeling. Besides various cytokines and growth-factors, neuronal guidance molecules gained attention for their roles in bone homeostasis and thus, potential roles during tooth movement. Several neuronal guidance molecules have been implicated in the regulation of bone remodeling. Amongst them, Semaphorin 3A is particular interesting as it concurrently induces osteoblast differentiation and disturbs osteoclast differentiation. Methods: Mechano-regulation of Sema3A and its receptors PlexinA1 and Neuropilin (RT-qPCR, WB) was evaluated by applying compressive and tension forces to primary human periodontal fibroblasts (hPDLF) and alveolar bone osteoblasts (hOB). The association of the transcription factor Osterix (SP7) and SEMA3A was studied by RT-qPCR. Mechanisms involved in SEMA3A-mediated osteoblast differentiation were assessed by Rac1GTPase pull-downs, β-catenin expression analyses (RT-qPCR) and nuclear translocation assays (IF). Osteogenic markers were analyzed by RT-qPCR. Results: SEMA3A, PLXNA1 and NRP1 were differentially regulated by tension or compressive forces in hPDLF. Osterix (SP7) displayed the same pattern of regulation. Recombinant Sema3A induced the activation of Rac1GTPase, the nuclear translocation of β-catenin and the expression of osteogenic marker genes. Conclusion: Sema3A, its receptors and Osterix are regulated by mechanical forces in hPDLF. SEMA3A upregulation was associated with Osterix (SP7) modulation. Sema3A-enhanced osteogenic marker gene expression in hOB might be dependent on a pathway involving Rac1GTPase and β-catenin. Thus, Semaphorin 3A might contribute to bone remodeling during induced tooth movement.


Sign in / Sign up

Export Citation Format

Share Document