scholarly journals Effect of IL15 on T cell clonality in vitro and in the synovial fluid of patients with rheumatoid arthritis

2000 ◽  
Vol 59 (9) ◽  
pp. 688-694 ◽  
Author(s):  
K. Masuko-Hongo
2020 ◽  
Author(s):  
Vadim R. Gorodetskiy ◽  
Yulia V. Sidorova ◽  
Natalia A. Kupryshina ◽  
Vladimir I. Vasilyev ◽  
Natalya A. Probatova ◽  
...  

Abstract Objectives Approximately 15% of patients with T-cell large granular lymphocytic leukemia (T-LGLL) have rheumatoid arthritis (RA). RA-associated T-LGLL with low large granular lymphocyte counts (aleukemic presentation) and Felty's syndrome (FS) have indistinguishable clinical presentations. These disorders are distinguished by T-cell clonality which is observed in T-LGLL but not in FS. Activating somatic mutations in the signal transducer and activator of transcription 3 (STAT3) and 5 (STAT5b) genes are involved in T-LGLL pathogenesis; however, the prevalence of these mutations in FS is unknown.Methods Based on the rearrangements of T-cell receptor (TCR) gamma and beta genes according to the BIOMED-2 protocol, we examined T-cell clonality in 81 patients with RA and unexplained neutropenia. We stratified these patients by the presence or absence of T-cell clonality, respectively, into 2 groups: RA-associated T-LGLL (56 patients) and FS (25 patients). Allele-specific TaqMan Real-Time polymerase chain reaction assay was employed to detect point somatic mutations in STAT3 and STAT5b genes in each group.Results Mutations of the STAT3 gene were detected in none of the 24 cases of FS and in 22 of 56 cases of RA-associated T-LGLL (39%) (p < 0.001). No mutation of the STAT5b gene was detected in any of the patients in each group.Conclusions Although further data are needed, our results suggest that activating somatic mutations in STAT3 and STAT5b genes are not involved in the pathogenesis of FS.


Author(s):  
Vadim Romanovich Gorodetskiy ◽  
Yulia Vladimirovna Sidorova ◽  
Natalia Alexandrovna Kupryshina ◽  
Vladimir Ivanovich Vasilyev ◽  
Natalya Alexandrovna Probatova ◽  
...  

AbstractT-cell large granular lymphocytic leukemia (T-LGLL) is a lymphoproliferative disorder characterized by a persistent increase in the number of large granular lymphocytes (LGLs), neutropenia, and splenomegaly. Clinical manifestations of T-LGLL in the setting of rheumatoid arthritis (RA) are often identical to those in which one would suspect Felty's syndrome (FS). These disorders are distinguished by the presence of T-cell clonality, which is present in T-LGLL but not in FS. Mutations in the signal transducer and activator of transcription 3 (STAT3) and 5b (STAT5b) genes can be used as molecular markers of T-LGLL, but their prevalence in FS is unknown.Eighty-one patients with RA and unexplained neutropenia or/and an increase in the number of LGLs above 2 × 109/L were stratified into RA-associated T-LGLL (N = 56) or FS (N = 25) groups based on the presence or absence of T-cell clonality. STAT3 and STAT5b gene mutations were assessed in each group by means of allele-specific polymerase chain reaction assays. Clinical, immunological, laboratory data and the results of immunophenotyping of blood and bone marrow lymphocytes were also evaluated.Mutations of the STAT3 gene and an increase in the number of LGLs above 2 × 109/L were detected in RA-associated T-LGLL, but not in FS (39% vs 0% and 21% vs 0%, respectively). Mutations in the STAT5b gene were not observed in either group. Expression of CD57, CD16, and CD5−/dim on CD3+CD8+ T-lymphocytes was observed in both RA-associated T-LGLL and FS.STAT3 gene mutations or LGL counts over 2 × 109/L in RA patients are indicative of T-LGLL.


Rheumatology ◽  
1995 ◽  
Vol 34 (3) ◽  
pp. 232-235 ◽  
Author(s):  
S. N. KARIM ◽  
E. A. MURPHY ◽  
R. D. STURROCK ◽  
R. B. GOUDIE

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 235.1-236
Author(s):  
R. Kumar ◽  
N. Yoosuf ◽  
C. Gerstner ◽  
S. Turcinov ◽  
K. Chemin ◽  
...  

Background:Autoimmunity to citrullinated autoantigens forms a critical component of disease pathogenesis in rheumatoid arthritis (RA). Presence of anti-citrullinated protein antibodies (ACPAs) in patients has high diagnostic value. Recently, several citrullinated antigen specific CD4+T cells have been described. However, detailed studies of their T-cell receptor usage and in-vivo profile suffer from the disadvantage that these cells are present at very low frequencies. In this context, we here present a pipeline for TCR repertoire analysis of antigen-specific CD4+T cells from RA patients, including both citrulline and influenza (control) specificities using in-vitro peptide challenge induced-cell expansion.Objectives:To enable studies of the T cell repertoire of citrullinated antigen-specific CD4+T cells in rheumatoid arthritisMethods:Peripheral blood mononuclear cells (PBMCs) (n=7) and synovial fluid mononuclear cells (SFMCs) (n=5) from HLA-DR*0401-postive RA patients were cultured in the presence of citrullinated Tenascin C peptide cocktails or influenza peptides (positive control). Citrulline reactive cells were further supplemented with recombinant human IL-15 and IL-7 on day 2. All cultures were replenished with fresh medium on day 6 and rIL-2 was added every 2 days from then. Assessment of proportion of peptide-HLA-tetramer positive cells was performed using flow cytometry whereby individual antigen-specific CD4+T cells were sorted into 96-well plates containing cell lysis buffer, followed by PCR-based alpha/beta TCR sequencing. TCR sequencing data was demultiplexed and aligned for TCR gene usage using MiXCR. Some tetramer positive cells were sorted into complete medium containing human IL-2 and PHA for expansion of antigen-specific cells. Cells were supplemented with irradiated allogenic PBMCs (30 times number of antigen specific cells). Clones of antigen specific CD4+T cells were further subjected to tetramer staining to confirm expansion of cells.Results:As evidenced by increase in frequency of tetramer positive CD4+T cells, in vitro peptide stimulation resulted in expansion of both influenza specific (Fig. 1a) and citrullinated antigen specific (Fig. 1b) CD4+T cells. Polyclonal in-vitro expansion of tenascin C tetramer positive sorted cells followed by tetramer staining further confirmed antigen specificity and enrichment for antigen specific CD4+T cells after polyclonal stimulation (Fig.1c). TCR repertoire analysis in PB and SF dataset from the first patient showed clonal expansion of influenza specific cells in both sites. Synovial fluid had more diversity of expanding clones as compared to paired PB, with few expanded clones being shared among SF and PB. We observed a more diverse TCR repertoire in citrulline specific CD4+T cells. We also observed sharing of TCR alpha chains among different citrulline specific CD4+T cell clones.Fig. 1In-vitroexpansion of antigen specific CD4+T cells:Conclusion:This method provides a highly suitable approach for investigating TCR specificities of antigen specific CD4+T cells under conditions of low cell yields. Building on this dataset will allow us to assess specific features of TCR usage of autoreactive T cells in RA.PBMCs were cultured in presence of (a) influenza (HA, MP54) and (b) citrullinated tenascin peptides. The proportion of antigen specific CD4+T cells was assessed using HLA-class II tetramer staining. We observed an increase in frequency of (a) Infleunza specific cells (red dots in upper left and lower right quadrants) and (b) citrullinated tenascin C specific cells (red dots in lower right quadrant), at day 13 post culture as compared to day 3. (c) Sorting of citrullinated tenascin specific CD4+T cells, followed by PHA expansion resulted in visible increase in proportion of citrullinated tenascin specific CD4+T cells.Disclosure of Interests:Ravi kumar: None declared, Niyaz Yoosuf: None declared, Christina Gerstner: None declared, Sara Turcinov: None declared, Karine Chemin: None declared, Vivianne Malmström Grant/research support from: VM has had research grants from Janssen Pharmaceutica


Sign in / Sign up

Export Citation Format

Share Document