scholarly journals Analysis of a single-institution cohort of patients with Felty's syndrome and T-cell large granular lymphocytic leukemia in the setting of rheumatoid arthritis

Author(s):  
Vadim Romanovich Gorodetskiy ◽  
Yulia Vladimirovna Sidorova ◽  
Natalia Alexandrovna Kupryshina ◽  
Vladimir Ivanovich Vasilyev ◽  
Natalya Alexandrovna Probatova ◽  
...  

AbstractT-cell large granular lymphocytic leukemia (T-LGLL) is a lymphoproliferative disorder characterized by a persistent increase in the number of large granular lymphocytes (LGLs), neutropenia, and splenomegaly. Clinical manifestations of T-LGLL in the setting of rheumatoid arthritis (RA) are often identical to those in which one would suspect Felty's syndrome (FS). These disorders are distinguished by the presence of T-cell clonality, which is present in T-LGLL but not in FS. Mutations in the signal transducer and activator of transcription 3 (STAT3) and 5b (STAT5b) genes can be used as molecular markers of T-LGLL, but their prevalence in FS is unknown.Eighty-one patients with RA and unexplained neutropenia or/and an increase in the number of LGLs above 2 × 109/L were stratified into RA-associated T-LGLL (N = 56) or FS (N = 25) groups based on the presence or absence of T-cell clonality. STAT3 and STAT5b gene mutations were assessed in each group by means of allele-specific polymerase chain reaction assays. Clinical, immunological, laboratory data and the results of immunophenotyping of blood and bone marrow lymphocytes were also evaluated.Mutations of the STAT3 gene and an increase in the number of LGLs above 2 × 109/L were detected in RA-associated T-LGLL, but not in FS (39% vs 0% and 21% vs 0%, respectively). Mutations in the STAT5b gene were not observed in either group. Expression of CD57, CD16, and CD5−/dim on CD3+CD8+ T-lymphocytes was observed in both RA-associated T-LGLL and FS.STAT3 gene mutations or LGL counts over 2 × 109/L in RA patients are indicative of T-LGLL.

2020 ◽  
Author(s):  
Vadim R. Gorodetskiy ◽  
Yulia V. Sidorova ◽  
Natalia A. Kupryshina ◽  
Vladimir I. Vasilyev ◽  
Natalya A. Probatova ◽  
...  

Abstract Objectives Approximately 15% of patients with T-cell large granular lymphocytic leukemia (T-LGLL) have rheumatoid arthritis (RA). RA-associated T-LGLL with low large granular lymphocyte counts (aleukemic presentation) and Felty's syndrome (FS) have indistinguishable clinical presentations. These disorders are distinguished by T-cell clonality which is observed in T-LGLL but not in FS. Activating somatic mutations in the signal transducer and activator of transcription 3 (STAT3) and 5 (STAT5b) genes are involved in T-LGLL pathogenesis; however, the prevalence of these mutations in FS is unknown.Methods Based on the rearrangements of T-cell receptor (TCR) gamma and beta genes according to the BIOMED-2 protocol, we examined T-cell clonality in 81 patients with RA and unexplained neutropenia. We stratified these patients by the presence or absence of T-cell clonality, respectively, into 2 groups: RA-associated T-LGLL (56 patients) and FS (25 patients). Allele-specific TaqMan Real-Time polymerase chain reaction assay was employed to detect point somatic mutations in STAT3 and STAT5b genes in each group.Results Mutations of the STAT3 gene were detected in none of the 24 cases of FS and in 22 of 56 cases of RA-associated T-LGLL (39%) (p < 0.001). No mutation of the STAT5b gene was detected in any of the patients in each group.Conclusions Although further data are needed, our results suggest that activating somatic mutations in STAT3 and STAT5b genes are not involved in the pathogenesis of FS.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 408
Author(s):  
Noemí Muñoz-García ◽  
F. Morán-Plata ◽  
Neus Villamor ◽  
Margarida Lima ◽  
Susana Barrena ◽  
...  

Flow cytometric (FCM) analysis of the constant region 1 of the T-cell receptor β chain (TRBC1) expression for assessing Tαβ-cell clonality has been recently validated. However, its utility for the diagnosis of clonality of T-large granular lymphocytic leukemia (T-LGLL) needs to be confirmed, since more mature Tαβ cells (i.e., T-LGL normal-counterpart) show broader TRBC1+/TRBC1− ratios vs. total Tαβ cells. We compared the distribution and absolute counts of TRBC1+ and TRBC1− Tαβ-LGL in blood containing polyclonal (n = 25) vs. clonal (n = 29) LGL. Overall, polyclonal TRBC1+ or TRBC1− Tαβ-LGL ranged between 0.36 and 571 cells/μL (3.2–91% TRBC1+ cells), whereas the clonal LGL cases showed between 51 and 11,678 cells/μL (<0.9% or >96% TRBC1+ cells). Among the distinct TCRVβ families, the CD28− effector-memory and terminal-effector polyclonal Tαβ cells ranged between 0 and 25 TRBC1+ or TRBC1− cells/μL and between 0 and 100% TRBC1+ cells, while clonal LGL ranged between 32 and 5515 TRBC1+ or TRBC1− cells/μL, representing <1.6% or >98% TRBC1+ cells. Our data support the utility of the TRBC1-FCM assay for detecting T-cell clonality in expansions of Tαβ-LGL suspected of T-LGLL based on altered percentages of TRBC1+ Tαβ cells. However, in the absence of lymphocytosis or in the case of TαβCD4-LGL expansion, the detection of increased absolute cell counts by the TRBC1-FCM assay for more accurately defined subpopulations of Tαβ-LGL-expressing individual TCRVβ families, allows the detection of T-cell clonality, even in the absence of phenotypic aberrations.


2009 ◽  
Vol 33 (4) ◽  
pp. 342-350 ◽  
Author(s):  
David C. Linch ◽  
Adrian C. Newland ◽  
Alan L. Tumbull ◽  
Lesley J. Knott ◽  
Alan MacWhannel ◽  
...  

2021 ◽  
Author(s):  
Vadim Gorodetskiy

Felty’s syndrome (FS) is an uncommon subset of seropositive rheumatoid arthritis (RA) complicated by neutropenia with or without splenomegaly. The pathogenesis of neutropenia in FS is still not fully understood, but it is believed that the principal cause is neutrophil survival defect. Autoantibodies against peptidylarginine deiminase type 4 deiminated histones, glucose-6-phosphate isomerase, and eukaryotic elongation factor 1A-1 antigen may contribute to neutropenia development in FS patients. Splenic histology in FS shows non-specific findings and spleen size do not correlate with neutropenia. Cases of T-cell large granular lymphocytic leukemia with low tumor burden in blood and concomitant RA are clinically indistinguishable from FS and present a diagnostic challenge. Examination of T-cell clonality, mutations in signal transducer and activator of transcription 3 gene, and the number of large granular lymphocytes in the blood can establish a correct diagnosis. Optimal approaches to therapy for FS have not been developed, but the use of rituximab seems promising. In this chapter, the epidemiology, pathogenesis, clinical manifestations, differential diagnosis, and treatment options for FS are discussed.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2404-2404
Author(s):  
Yannick Le Bris ◽  
Audrey Ménard ◽  
Anne Moreau ◽  
Nowenn Le Lan ◽  
Céline Bossard ◽  
...  

Abstract Introduction The diagnosis of B and T cell malignancies relies on the demonstration of B-cell (BCR) or T-cell (TCR) antigen receptor clonality. This can be studied through the analysis of V(D)J rearrangements of BCR and TCR genes by PCR (van Dongen Leukemia 2003) or, more recently, by high-throughput sequencing (HTS). Amplification of a clonal population with a "primers approach" could fail in case of hybridization problems due to too fragmented DNA, somatic mutations or polymorphic variations. Here we evaluated the performance of a HTS capture system for the analysis of B and T-cell clonality in clinical samples from mature T or B malignancies. We further combined this technology to concomitant sequencing of oncogenes of interest. Patients and Methods DNA was extracted from 58 tumoral samples from fresh/frozen (FF) cells or tissues or formalin-fixed paraffin-embedded tissue (FFPE) (n=19). These samples comprised various T-cell [i.e. 1T-cell prolymphocytic leukemia, 1 T large granular lymphocytic leukemia, 2 Sézary syndrome, 4 peripheral T-cell lymphoma not otherwise specified, 14 angioimmunoblastic T-cell lymphoma] or B-cell [i.e. 14 chronic lymphocytic leukemia, 1 mantle cell lymphoma, 5 diffuse large B-cell lymphoma, 1 grey-zone lymphoma, 13 Hodgkin lymphoma, 1 Poppema, 2 Waldenström and 1 multiple myeloma] malignancies. The Biomed-2 PCR technique was used as standard for assessing the performance of TRG, IGH and IGK clonality analysis. An extensive panel of capture probes was designed (SureSelect XT HS2 DNA system, Agilent Technologies) that covered the variable (V), + diversity (D) and junction (J) segments of the IGH, IGK, TRG, TRB loci and diagnostic/theranostic genes of interest i.e. B2M, BTK, CARD11, CD28, DNMT3A, IDH2, JAK3, PLCG1, PLCG2, ROHA, SOCS1, STAT3, STAT5B, STAT6, TET2, TNFAIP3, TP53. Paired-End sequencing was performed on a MiSeq system (Illumina) in 300, 500 and 600 cycles. Analysis of clonality profiles was performed using Vidjil software and SeqOne. Results HTS runs resulted in a median total read count of 1,6M (0.7-2.9) per sample. V(D)J rearrangements were identified with a median of 1503 reads (189-6824) per sample. Five samples were excluded because less than 300 rearranged reads were obtained. The number of rearranged reads and of clonotypes identified are influenced by the number of sequencing cycles (300&lt;500 or 600) but not by the quality of DNA (FFPE vs FF). Analyses of tumoral samples with HTS versus PCR were compared. For the IGH locus (n=47), comparable PCR/HTS clonal (n=22) and polyclonal (PCL, n=20) profiles were identified. One discordant case showed a clonal PCR profile and a PCL HTS profile but the IGK was clonal. For the IGK locus (n=23), 10 clonal and 12 PCL cases were similar with both techniques. One case appeared discordant with a PCL PCR profile but a clonal HTS profile. For the TRG locus (n=31), PCR and HTS profiles were similar in 14 clonal, 5 oligoclonal and 9 PCL cases respectively. Three cases were discordant with oligoclonal PCR profiles but a clonal HTS profile. Overall in the 38 cases of B-cell malignancies, 27 and 11 cases had a concordant B-cell clonal or PCL profile with PCR and HTS. Among PCL cases, only one was discordant with a clonal HTS profile. This case and 3 other PCL cases were Hodgkin lymphomas which all disclosed another mutation (i.e. TP53, TNFAIP3, SOCS1). Of the 20 cases of T-cell malignancies, 14 displayed a clonal TRG profile with PCR and HTS. Among them, 13 showed oncogene mutations that confirmed the oncogenic nature of the clonal proliferation. Among 6 patients with a non-clonal PCR TRG profile, two cases of AITL and T-LGL had a discordant clonal TRG HTS profile and both also had specific mutations (SOCS1, RHOA and STAT3 respectively). Two other AITL samples showed a T-PCL profile with PCR and HTS but also had a mutation/CNV (RHOA, SOCS1). Conclusion A very good performance of B and T cell clonality assessment was obtained here with capture-HTS compared to Biomed-2 PCR. The combined identification of mutation/CNV allowed to confirm the malignant character in cases of clonal or PCL lymphoproliferations, while concomitantly specifying the type of lymphoproliferative disorder. The combined capture-HTS of B and T repertoires and oncogenes of diagnostic or theranostic interest thus appears as an efficient, accurate and useful approach for the diagnosis of mature B and T lymphoid malignancies in clinical practice. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document