scholarly journals The azygos lobe and vein: interesting and typical clinical image

2011 ◽  
Vol 2011 (sep28 1) ◽  
pp. bcr0520114266-bcr0520114266
Author(s):  
P. R. Karre ◽  
G. B. Cooper
Keyword(s):  
2007 ◽  
Vol 58 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Momoka Nakai ◽  
Kiyoshi Makiyama ◽  
Takahisa Nakai ◽  
Hidetaka Yoshihashi

2020 ◽  
Vol 62 (1) ◽  
pp. 55-59
Author(s):  
Krzysztof Mataczyński ◽  
Mateusz Pelc ◽  
Halina Romualda Zięba ◽  
Zuzana Hudakova

Acquired adult flatfoot is a three-dimensional deformation, which consists of hindfoot valgus, collapse of the longitudinal arch of the foot and adduction of the forefoot. The aim of the work is to present problems related to etiology, biomechanics, clinical diagnostics and treatment principles of acquired flatfoot. The most common cause in adults is the dysfunction of the tibialis posterior muscle, leading to the lack of blocking of the transverse tarsal joint during heel elevation. Loading the unblocked joints consequently leads to ligament failure. The clinical image is dominated by pain in the foot and tibiotarsal joint. The physical examination of the flat feet consists of: inspection, palpation, motion range assessment and dynamic force assessment. The comparable attention should be paid to the height of the foot arch, the occurrence of “too many toes” sign, evaluate the heel- rise test and correction of the flatfoot, exclude Achilles tendon contracture. The diagnosis also uses imaging tests. In elastic deformations with symptoms of posterior tibial tendonitis, non-steroidal anti-inflammatory drugs, short-term immobilization, orthotics stabilizing the medial arch of the foot are used. In rehabilitation, active exercises of the shin muscles and the feet, especially the eccentric exercises of the posterior tibial muscle, are intentional. The physiotherapy and balneotherapy treatments, in particular hydrotherapy, electrotherapy and laser therapy, are used as a support. In advanced lesions, surgical treatment may be necessary, including plastic surgery of soft tissues, tendons, as well as osteotomy procedures.


2020 ◽  
Author(s):  
Xiaoyu He ◽  
Juan Su ◽  
Guangyu Wang ◽  
Kang Zhang ◽  
Navarini Alexander ◽  
...  

BACKGROUND Pemphigus vulgaris (PV) and bullous pemphigoid (BP) are two rare but severe inflammatory dermatoses. Due to the regional lack of trained dermatologists, many patients with these two diseases are misdiagnosed and therefore incorrectly treated. An artificial intelligence diagnosis framework would be highly adaptable for the early diagnosis of these two diseases. OBJECTIVE Design and evaluate an artificial intelligence diagnosis framework for PV and BP. METHODS The work was conducted on a dermatological dataset consisting of 17,735 clinical images and 346 patient metadata of bullous dermatoses. A two-stage diagnosis framework was designed, where the first stage trained a clinical image classification model to classify bullous dermatoses from five common skin diseases and normal skin and the second stage developed a multimodal classification model of clinical images and patient metadata to further differentiate PV and BP. RESULTS The clinical image classification model and the multimodal classification model achieved an area under the receiver operating characteristic curve (AUROC) of 0.998 and 0.942, respectively. On the independent test set of 20 PV and 20 BP cases, our multimodal classification model (sensitivity: 0.85, specificity: 0.95) performed better than the average of 27 junior dermatologists (sensitivity: 0.68, specificity: 0.78) and comparable to the average of 69 senior dermatologists (sensitivity: 0.80, specificity: 0.87). CONCLUSIONS Our diagnosis framework based on clinical images and patient metadata achieved expert-level identification of PV and BP, and is potential to be an effective tool for dermatologists in remote areas in the early diagnosis of these two diseases.


1992 ◽  
Vol 158 (2) ◽  
pp. 458-458 ◽  
Author(s):  
F Hall
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Andrea Duggento ◽  
Marco Aiello ◽  
Carlo Cavaliere ◽  
Giuseppe L. Cascella ◽  
Davide Cascella ◽  
...  

Breast cancer is one of the most common cancers in women, with more than 1,300,000 cases and 450,000 deaths each year worldwide. In this context, recent studies showed that early breast cancer detection, along with suitable treatment, could significantly reduce breast cancer death rates in the long term. X-ray mammography is still the instrument of choice in breast cancer screening. In this context, the false-positive and false-negative rates commonly achieved by radiologists are extremely arduous to estimate and control although some authors have estimated figures of up to 20% of total diagnoses or more. The introduction of novel artificial intelligence (AI) technologies applied to the diagnosis and, possibly, prognosis of breast cancer could revolutionize the current status of the management of the breast cancer patient by assisting the radiologist in clinical image interpretation. Lately, a breakthrough in the AI field has been brought about by the introduction of deep learning techniques in general and of convolutional neural networks in particular. Such techniques require no a priori feature space definition from the operator and are able to achieve classification performances which can even surpass human experts. In this paper, we design and validate an ad hoc CNN architecture specialized in breast lesion classification from imaging data only. We explore a total of 260 model architectures in a train-validation-test split in order to propose a model selection criterion which can pose the emphasis on reducing false negatives while still retaining acceptable accuracy. We achieve an area under the receiver operatic characteristics curve of 0.785 (accuracy 71.19%) on the test set, demonstrating how an ad hoc random initialization architecture can and should be fine tuned to a specific problem, especially in biomedical applications.


Author(s):  
Hugh G. Pemberton ◽  
◽  
Olivia Goodkin ◽  
Ferran Prados ◽  
Ravi K. Das ◽  
...  

Abstract Objectives We examined whether providing a quantitative report (QReport) of regional brain volumes improves radiologists’ accuracy and confidence in detecting volume loss, and in differentiating Alzheimer’s disease (AD) and frontotemporal dementia (FTD), compared with visual assessment alone. Methods Our forced-choice multi-rater clinical accuracy study used MRI from 16 AD patients, 14 FTD patients, and 15 healthy controls; age range 52–81. Our QReport was presented to raters with regional grey matter volumes plotted as percentiles against data from a normative population (n = 461). Nine raters with varying radiological experience (3 each: consultants, registrars, ‘non-clinical image analysts’) assessed each case twice (with and without the QReport). Raters were blinded to clinical and demographic information; they classified scans as ‘normal’ or ‘abnormal’ and if ‘abnormal’ as ‘AD’ or ‘FTD’. Results The QReport improved sensitivity for detecting volume loss and AD across all raters combined (p = 0.015* and p = 0.002*, respectively). Only the consultant group’s accuracy increased significantly when using the QReport (p = 0.02*). Overall, raters’ agreement (Cohen’s κ) with the ‘gold standard’ was not significantly affected by the QReport; only the consultant group improved significantly (κs 0.41➔0.55, p = 0.04*). Cronbach’s alpha for interrater agreement improved from 0.886 to 0.925, corresponding to an improvement from ‘good’ to ‘excellent’. Conclusion Our QReport referencing single-subject results to normative data alongside visual assessment improved sensitivity, accuracy, and interrater agreement for detecting volume loss. The QReport was most effective in the consultants, suggesting that experience is needed to fully benefit from the additional information provided by quantitative analyses. Key Points • The use of quantitative report alongside routine visual MRI assessment improves sensitivity and accuracy for detecting volume loss and AD vs visual assessment alone. • Consultant neuroradiologists’ assessment accuracy and agreement (kappa scores) significantly improved with the use of quantitative atrophy reports. • First multi-rater radiological clinical evaluation of visual quantitative MRI atrophy report for use as a diagnostic aid in dementia.


2010 ◽  
Vol 62 (4) ◽  
pp. 1201-1201
Author(s):  
Jean-Philippe Hauzeur ◽  
Valérie Gangji

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kinshuk Sengupta ◽  
Praveen Ranjan Srivastava

Abstract Background In medical diagnosis and clinical practice, diagnosing a disease early is crucial for accurate treatment, lessening the stress on the healthcare system. In medical imaging research, image processing techniques tend to be vital in analyzing and resolving diseases with a high degree of accuracy. This paper establishes a new image classification and segmentation method through simulation techniques, conducted over images of COVID-19 patients in India, introducing the use of Quantum Machine Learning (QML) in medical practice. Methods This study establishes a prototype model for classifying COVID-19, comparing it with non-COVID pneumonia signals in Computed tomography (CT) images. The simulation work evaluates the usage of quantum machine learning algorithms, while assessing the efficacy for deep learning models for image classification problems, and thereby establishes performance quality that is required for improved prediction rate when dealing with complex clinical image data exhibiting high biases. Results The study considers a novel algorithmic implementation leveraging quantum neural network (QNN). The proposed model outperformed the conventional deep learning models for specific classification task. The performance was evident because of the efficiency of quantum simulation and faster convergence property solving for an optimization problem for network training particularly for large-scale biased image classification task. The model run-time observed on quantum optimized hardware was 52 min, while on K80 GPU hardware it was 1 h 30 min for similar sample size. The simulation shows that QNN outperforms DNN, CNN, 2D CNN by more than 2.92% in gain in accuracy measure with an average recall of around 97.7%. Conclusion The results suggest that quantum neural networks outperform in COVID-19 traits’ classification task, comparing to deep learning w.r.t model efficacy and training time. However, a further study needs to be conducted to evaluate implementation scenarios by integrating the model within medical devices.


Sign in / Sign up

Export Citation Format

Share Document