scholarly journals Association of ambient air pollution with age-related macular degeneration and retinal thickness in UK Biobank

2021 ◽  
pp. bjophthalmol-2020-316218 ◽  
Author(s):  
Sharon Y L Chua ◽  
Alasdair Warwick ◽  
Tunde Peto ◽  
Konstantinos Balaskas ◽  
Anthony T Moore ◽  
...  

AimTo examine the associations of air pollution with both self-reported age-related macular degeneration (AMD), and in vivo measures of retinal sublayer thicknesses.MethodsWe included 115 954 UK Biobank participants aged 40–69 years old in this cross-sectional study. Ambient air pollution measures included particulate matter, nitrogen dioxide (NO2) and nitrogen oxides (NOx). Participants with self-reported ocular conditions, high refractive error (< −6 or > +6 diopters) and poor spectral-domain optical coherence tomography (SD-OCT) image were excluded. Self-reported AMD was used to identify overt disease. SD-OCT imaging derived photoreceptor sublayer thickness and retinal pigment epithelium (RPE) layer thickness were used as structural biomarkers of AMD for 52 602 participants. We examined the associations of ambient air pollution with self-reported AMD and both photoreceptor sublayers and RPE layer thicknesses.ResultsAfter adjusting for covariates, people who were exposed to higher fine ambient particulate matter with an aerodynamic diameter <2.5 µm (PM2.5, per IQR increase) had higher odds of self-reported AMD (OR=1.08, p=0.036), thinner photoreceptor synaptic region (β=−0.16 µm, p=2.0 × 10−5), thicker photoreceptor inner segment layer (β=0.04 µm, p=0.001) and thinner RPE (β=−0.13 µm, p=0.002). Higher levels of PM2.5 absorbance and NO2 were associated with thicker photoreceptor inner and outer segment layers, and a thinner RPE layer. Higher levels of PM10 (PM with an aerodynamic diameter <10 µm) was associated with thicker photoreceptor outer segment and thinner RPE, while higher exposure to NOx was associated with thinner photoreceptor synaptic region.ConclusionGreater exposure to PM2.5 was associated with self-reported AMD, while PM2.5, PM2.5 absorbance, PM10, NO2 and NOx were all associated with differences in retinal layer thickness.

2018 ◽  
Vol 33 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Arun Kumar Sharma ◽  
Palak Baliyan ◽  
Prashant Kumar

AbstractMitigating the impact of pollution on human health worldwide is important to limit the morbidity and mortality arising from exposure to its effect. The level and type of pollutants vary in different urban and rural settings. Here, we explored the extent of air pollution and its impacts on human health in the megacity of Delhi (India) through a review of the published literature. The study aims at describing the extent of air pollution in Delhi, the magnitude of health problems due to air pollution and the risk relationship between air pollution and associated health effects. We found 234 published articles in the PubMed search. The search showed that the extent of air pollution in Delhi has been described by various researchers from about 1986 onwards. We synthesized the findings and discuss them at length with respect to reported values, their possible interpretations and any limitations of the methodology. The chemical composition of ambient air pollution is also discussed. Further, we discuss the magnitude of health problem with respect to chronic obstructive pulmonary diseases (COPD), bronchial asthma and other illnesses. The results of the literature search showed that data has been collected in last 28 years on ambient air quality in Delhi, though it lacks a scientific continuity, consistency of locations and variations in parameters chosen for reporting. As a result, it is difficult to construct a spatiotemporal picture of the air pollution status in Delhi over time. The number of sites from where data have been collected varied widely across studies and methods used for data collection is also non-uniform. Even the parameters studied are varied, as some studies focused on particulate matter ≤10 μm in aerodynamic diameter (PM10) and those ≤2.5 μm in aerodynamic diameter (PM2.5), and others on suspended particulate matter (SPM) and respirable suspended particulate matter (RSPM). Similarly, the locations of data collection have varied widely. Some of the sites were at busy traffic intersections, some on the terraces of offices and residential houses and others in university campuses or airports. As a result, the key question of the extent of pollution and its distribution across various parts of the city could be inferred. None of the studies or a combination of them could present a complete picture of the burden of diseases like COPD, bronchial asthma and other allergic conditions attributable to pollution in Delhi. Neither could it be established what fraction of the burden of the above diseases is attributable to ambient air pollution, given that other factors like tobacco smoke and indoor air pollution are also contributors to the causation of such diseases. In our discussion, we highlight the knowledge gaps and in the conclusion, we suggested what research can be undertaken to fill the these research gaps.


2019 ◽  
Vol 54 (1) ◽  
pp. 1802140 ◽  
Author(s):  
Dany Doiron ◽  
Kees de Hoogh ◽  
Nicole Probst-Hensch ◽  
Isabel Fortier ◽  
Yutong Cai ◽  
...  

Ambient air pollution increases the risk of respiratory mortality, but evidence for impacts on lung function and chronic obstructive pulmonary disease (COPD) is less well established. The aim was to evaluate whether ambient air pollution is associated with lung function and COPD, and explore potential vulnerability factors.We used UK Biobank data on 303 887 individuals aged 40–69 years, with complete covariate data and valid lung function measures. Cross-sectional analyses examined associations of land use regression-based estimates of particulate matter (particles with a 50% cut-off aerodynamic diameter of 2.5 and 10 µm: PM2.5 and PM10, respectively; and coarse particles with diameter between 2.5 μm and 10 μm: PMcoarse) and nitrogen dioxide (NO2) concentrations with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio and COPD (FEV1/FVC <lower limit of normal). Effect modification was investigated for sex, age, obesity, smoking status, household income, asthma status and occupations previously linked to COPD.Higher exposures to each pollutant were significantly associated with lower lung function. A 5 µg·m−3 increase in PM2.5 concentration was associated with lower FEV1 (−83.13 mL, 95% CI −92.50– −73.75 mL) and FVC (−62.62 mL, 95% CI −73.91– −51.32 mL). COPD prevalence was associated with higher concentrations of PM2.5 (OR 1.52, 95% CI 1.42–1.62, per 5 µg·m−3), PM10 (OR 1.08, 95% CI 1.00–1.16, per 5 µg·m−3) and NO2 (OR 1.12, 95% CI 1.10–1.14, per 10 µg·m−3), but not with PMcoarse. Stronger lung function associations were seen for males, individuals from lower income households, and “at-risk” occupations, and higher COPD associations were seen for obese, lower income, and non-asthmatic participants.Ambient air pollution was associated with lower lung function and increased COPD prevalence in this large study.


Author(s):  
Jinyoung Shin ◽  
Hyungwoo Lee ◽  
Hyeongsu Kim

This study aimed to investigate the association between ambient air pollutants and cataracts in the general population aged 50 years or older using data from the Korean National Insurance Service—National Sample Cohort. Cataract patients were defined as those diagnosed by a physician and having undergone cataract surgery. After matching the average concentrations of PM2.5, PM10, NO2, CO, SO2, and O3 in residential areas, the association between quartile level of air pollutants and incidence of cataract was analyzed using a multivariate Cox-proportional hazard risk model. Among the 115,728 participants, 16,814 (14.5%) were newly diagnosed with cataract and underwent related surgery between 1 January 2004, and 31 December 2015. Exposure to PM10, NO2, and SO2 was positively associated with cataract incidence, while O3 was negatively associated. The adjusted hazard ratio (HR) with 95% confidence interval was 1.069 (1.025–1.115) in PM10 and 1.080 (1.030–1.133) in NO2. However, the association between cataract and the quartile of PM2.5 measured during one year in 2015 was not clear. The HR of female participants aged 65 or older was significantly increased according to quartile of air pollutants. We identified exposure to PM10, NO2, SO2, and O3 associated with cataract development in Korean adults aged ≥ 50 years. This information may be helpful for policymaking to control air pollution as a risk factor for eye health.


2020 ◽  
Vol 61 (5) ◽  
pp. 32
Author(s):  
Sharon Y. L. Chua ◽  
Anthony P. Khawaja ◽  
Andrew D. Dick ◽  
James Morgan ◽  
Baljean Dhillon ◽  
...  

2021 ◽  
Vol 62 (15) ◽  
pp. 7
Author(s):  
Sharon Y. L. Chua ◽  
Anthony P. Khawaja ◽  
Parul Desai ◽  
Jugnoo S. Rahi ◽  
Alex C. Day ◽  
...  

2019 ◽  
Vol 189 (2) ◽  
pp. 116-119
Author(s):  
Margarita Triguero-Mas ◽  
Èrica Martínez-Solanas ◽  
Jose Barrera-Gómez ◽  
David Agis ◽  
Noemí Pérez ◽  
...  

Abstract There is limited suggestive evidence of relationships between public transport strikes and either increased air pollution or worse population health. In this study we aimed to assess whether public transport strikes were associated with increases in health events (overall, cardiovascular and respiratory mortality, and cardiovascular and respiratory hospitalizations). We also explored whether air pollution mediated those associations. We used data from the city of Barcelona (Spain) for the period 2005–2016 on strikes, health events, and ambient air pollution (nitrogen dioxide, nitrogen monoxide, particulate matter (PM) with an aerodynamic diameter ≤10 μm, PM with an aerodynamic diameter ≤2.5μm, PM with an aerodynamic diameter ≤1μm, number of particles with a diameter greater than 5 nm per cm3 (particle number concentration), and black carbon). We used linear and quasi-Poisson regression models to explore the associations between air pollution and public transport strikes and between public transport strikes and health outcomes. We also investigated potential causal mediation by air pollution. Overall, this study suggested that public transport strikes are associated with increased overall mortality, respiratory mortality, and respiratory hospitalizations. However, our findings suggest that such increases are not mediated by the increase in air pollution. Our results indicate the need to further investigate these relationships and potential mechanisms.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
V. S. CHAUHAN ◽  
BHANUMATI SINGH ◽  
SHREE GANESH ◽  
JAMSHED ZAIDI

Studies on air pollution in large cities of India showed that ambient air pollution concentrations are at such levels where serious health effects are possible. This paper presents overview on the status of air quality index (AQI) of Jhansi city by using multivariate statistical techniques. This base line data can help governmental and non-governmental organizations for the management of air pollution.


Sign in / Sign up

Export Citation Format

Share Document