Is Physiological Equivalent Temperature (PET) a superior screening tool for heat stress risk than Wet-Bulb Globe Temperature (WBGT) index? Eight years of data from the Gothenburg half marathon

2020 ◽  
pp. bjsports-2019-100632 ◽  
Author(s):  
Sofia Thorsson ◽  
David Rayner ◽  
Gunnar Palm ◽  
Fredrik Lindberg ◽  
Eric Carlström ◽  
...  

BackgroundThe Wet-Bulb Globe Temperature (WBGT) index is a common tool to screen for heat stress for sporting events. However, the index has a number of limitations. Rational indices, such as the physiological equivalent temperature (PET) and Universal Thermal Climate Index (UTCI), are potential alternatives.AimTo identify the thermal index that best predicts ambulance-required assistances and collapses during a city half marathon.MethodsEight years (2010–2017) of meteorological and ambulance transport data, including medical records, from Gothenburg’s half-marathon were used to analyse associations between WBGT, PET and UTCI and the rates of ambulance-required assistances and collapses. All associations were evaluated by Monte-Carlo simulations and leave-one-out-cross-validation.ResultsThe PET index showed the strongest correlation with both the rate of ambulance-required assistances (R2=0.72, p=0.008) and collapses (R2=0.71, p=0.008), followed by the UTCI (R2=0.64, p=0.017; R2=0.64, p=0.017) whereas the WBGT index showed substantially poorer correlations (R2=0.56, p=0.031; R2=0.56, p=0.033). PET stages of stress, match the rates of collapses better that the WBGT flag colour warning. Compared with the PET, the WBGT underestimates heat stress, especially at high radiant heat load. The rate of collapses increases with increasing heat stress; large increase from the day before the race seems to have an impact of the rate of collapses.ConclusionWe contend that the PET is a better predictor of collapses during a half marathon than the WBGT. We call for further investigation of PET as a screening tool alongside WBGT.

MAUSAM ◽  
2021 ◽  
Vol 72 (4) ◽  
pp. 915-934
Author(s):  
MANASI DESAI ◽  
ASHISH NAVALE ◽  
AMIT G. DHORDE

In the present study, trends in heat stress during summer and monsoon season months were assessed for two cities, Pune and Mumbai, for the period of 47 years from 1969 to2015 with the application of empirically derived Heat Index (HI) and rational heat balance based Physiological Equivalent Temperature (PET) index. A stepwise multiple regression analysis was applied to determine contributing meteorological parameters responsible for changes in heat stress incidences. The study reveals a considerable increase in heat stress during the summer months over Mumbai compared to Pune city. Similarly, during the end months of monsoon season, thermal discomfort conditions aggravate over both the cities, with statistically significant rising trends. The actual identification and categorization of thermally discomfortable days during the study period in accordance with the Heat Index were moderate. They remained consistent in Pune during summer, however, in monsoon, heat stress incidences were meager. While at Mumbai days with 'High' and 'Very High,' heat stress have increased towards recent years. Categorization according to PET index depicted conspicuous presence of 'Strong' and 'Extreme heat stress' at Pune, while at Mumbai, 'Warm' and 'Hot' days portrayeda slight increase.  The assessment of meteorological parameters depicted that increased humidity and temperature were the main concern for the increase in heat stress over Mumbai. In contrast, mean radiant temperature, ambient air temperature with restricted wind speed leading to high sensible heat may be responsible for the significant increasing trend in PET. The study infers that both the cities are vulnerable to escalating heat stress and may have adverse implications on the health of city dwellers. 


GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 321-331
Author(s):  
Yuki Iwamoto ◽  
Yukitaka Ohashi

This study provides a decade-long link between summer heatstroke incidence and certain heat stress indices in 47 prefectures of Japan. The results for each prefecture were determined from the age-adjusted heatstroke incidence rate (TRadj) with heatstroke patients transported by ambulance, as well as from the daily maximum temperature (TEMPmax), maximum wet-bulb globe temperature (WBGTmax), and maximum universal thermal climate index (UTCImax) recorded from July to September of 2010–2019. The UTCImax relatively increased the vulnerability in many prefectures of northern Japan more distinctly than the other indices. In the following analysis, the ratio of the TRadj of the hottest to coolest months using the UTCImax was defined as the heatstroke risk of the hottest to coolest (HRHC). Overall, the HRHC varied approximately from 20 to 40 in many prefectures in the past decade. In contrast, for the same analysis performed in each month, HRHC ratios in July and August fell within 2–4 in many prefectures, whereas in September, the average and maximum HRHC ratios for all prefectures were 7.0 and 32.4, respectively. This difference can be related to the large difference in UTCImax between the maximum and minimum for a decade.


2013 ◽  
pp. 47-57
Author(s):  
Van Trong Le ◽  
Thi Tuyet Mai Nguyen ◽  
Thi Xuan Duyen Nguyen ◽  
Ba Luan Nguyen ◽  
Tuyen Pham ◽  
...  

Objectives: Presents heat stress Standard ISO 7243, which is based upon the wet bulb globe temperature index (WBGT), and considers its suitability for use worldwide. Materials and Methods: The WBGT index are considered and how it is used in ISO 7243 and across the world as a simple index for monitoring and assessing hot environments. Results: Management systems, involving risk assessments, that take account of context and culture, are required to ensure successful use of the standard and global applicability. For use outdoors, a WBGT equation that includes solar absorptivity is recommended. A ‘clothed WBGT’ is proposed to account for the effects of clothing. Conclusion: ISO 7243 is a simple tool to assess the heat stress and may be applicated worldwide.


2019 ◽  
Vol 40 (05) ◽  
pp. 312-316 ◽  
Author(s):  
Eric Carlström ◽  
Mats Borjesson ◽  
Gunnar Palm ◽  
Amir Khorram-Manesh ◽  
Fredrik Lindberg ◽  
...  

AbstractThe aim was to analyze the influence of weather conditions on medical emergencies in a half-marathon, specifically by evaluating its relation to the number of non-finishers, ambulance-required assistances, and collapses in need of ambulance as well as looking at the location of such emergencies on the race course. Seven years of data from the world’s largest half marathon were used. Meteorological data were obtained from a nearby weather station, and the Physiological Equivalent Temperature (PET) index was used as a measure of general weather conditions. Of the 315,919 race starters, 104 runners out of the 140 ambulance-required assistances needed ambulance services due to collapses. Maximum air temperature and PET significantly co-variated with ambulance-required assistances, collapses, and non-finishers (R2=0.65–0.92; p=0.001–0.03). When air temperatures vary between 15–29°C, an increase of 1°C results in an increase of 2.5 (0.008/1000) ambulance-required assistances, 2.5 (0.008/1000) collapses (needing ambulance services), and 107 (0.34/1000) non-finishers. The results also indicate that when the daily maximum PET varies between 18–35°C, an increase of 1°C PET results in an increase of 1.8 collapses (0.006/1000) needing ambulance services and 66 non-finishers (0.21/1000).


Health Scope ◽  
2018 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Hamidreza Heidari ◽  
Farideh Golbabaei ◽  
Aliakbar Shamsipour ◽  
Abbas Rahimi Forushani ◽  
Abbasali Gaeini

Author(s):  
Gholamabbas Fallah Ghalhari ◽  
Somayeh Farhang Dehghan ◽  
Elham Akhlaghi Pirposhteh ◽  
Mehdi Asghari

Introduction: Global warming is one of the most important environmental problems that have raised researchers’ attention. The present study aimed to analyze heat stress trends using the Wet Bulb Globe Temperature (WBGT) index in the country of Iran during the summer over a 30-year period. Materials and Methods: Daily summertime statistical data regarding mean temperature and mean relative humidity, taken from 40 synoptic meteorological stations across Iran during a 30-year period were obtained from the Iranian National Meteorological Department. The De Martonne climate classification system was used to categorize various climate regions of Iran. The WBGT index was calculated using the formula given by the Australian Bureau of Meteorology. The Mann-Kendall statistical test and the Sen's slope estimator were used to analyze the trends of the WBGT index. Results: The WBGT index had an upward trend during the three months of June, July, and August in 71.42%, 57.14%, and 66.66% of all stations and this trend was statistically significant in 53.32%, 50%, and 42.85% of those stations, respectively. Moreover, throughout the summer, 45% of the WBGT index measurements were in the medium range (18-23°C), 37.5% were in the high range (23-28°C), and 17.5% were in the very high range (> 28°C). Conclusion: The WBGT index followed an upward trend during the summer, especially in semi-arid regions of Iran. Considering the phenomenon of global warming, it is essential to monitor, plan ahead, and take necessary precaution measures for sensitive populations who are at high risk areas of the country.


Sign in / Sign up

Export Citation Format

Share Document