scholarly journals Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study

BMJ ◽  
2019 ◽  
pp. l6258 ◽  
Author(s):  
Yaguang Wei ◽  
Yan Wang ◽  
Qian Di ◽  
Christine Choirat ◽  
Yun Wang ◽  
...  

Abstract Objective To assess risks and costs of hospital admission associated with short term exposure to fine particulate matter with diameter less than 2.5 µm (PM 2.5 ) for 214 mutually exclusive disease groups. Design Time stratified, case crossover analyses with conditional logistic regressions adjusted for non-linear confounding effects of meteorological variables. Setting Medicare inpatient hospital claims in the United States, 2000-12 (n=95 277 169). Participants All Medicare fee-for-service beneficiaries aged 65 or older admitted to hospital. Main outcome measures Risk of hospital admission, number of admissions, days in hospital, inpatient and post-acute care costs, and value of statistical life (that is, the economic value used to measure the cost of avoiding a death) due to the lives lost at discharge for 214 disease groups. Results Positive associations between short term exposure to PM 2.5 and risk of hospital admission were found for several prevalent but rarely studied diseases, such as septicemia, fluid and electrolyte disorders, and acute and unspecified renal failure. Positive associations were also found between risk of hospital admission and cardiovascular and respiratory diseases, Parkinson’s disease, diabetes, phlebitis, thrombophlebitis, and thromboembolism, confirming previously published results. These associations remained consistent when restricted to days with a daily PM 2.5 concentration below the WHO air quality guideline for the 24 hour average exposure to PM 2.5 . For the rarely studied diseases, each 1 µg/m 3 increase in short term PM 2.5 was associated with an annual increase of 2050 hospital admissions (95% confidence interval 1914 to 2187 admissions), 12 216 days in hospital (11 358 to 13 075), US$31m (£24m, €28m; $29m to $34m) in inpatient and post-acute care costs, and $2.5bn ($2.0bn to $2.9bn) in value of statistical life. For diseases with a previously known association, each 1 µg/m 3 increase in short term exposure to PM 2.5 was associated with an annual increase of 3642 hospital admissions (3434 to 3851), 20 098 days in hospital (18 950 to 21 247), $69m ($65m to $73m) in inpatient and post-acute care costs, and $4.1bn ($3.5bn to $4.7bn) in value of statistical life. Conclusions New causes and previously identified causes of hospital admission associated with short term exposure to PM 2.5 were found. These associations remained even at a daily PM 2.5 concentration below the WHO 24 hour guideline. Substantial economic costs were linked to a small increase in short term PM 2.5 .

Author(s):  
Kohei Hasegawa ◽  
Hirokazu Toubou ◽  
Teruomi Tsukahara ◽  
Tetsuo Nomiyama

The short-term association between ambient particulate matter ≤2.5 microns in diameter (PM2.5) and hospital admissions is not fully understood. Studies of this association with hospital admission costs are also scarce, especially in entire hospitalized populations. We examined the association between ambient PM2.5 and all-cause hospital admissions, the corresponding total charges, and the total charges per patient by analyzing the hospital admission data of 2 years from 628 hospitals in 12 cities in Japan. We used generalized additive models with quasi-Poisson regression for hospital admissions and generalized additive models with log-linear regression for total charges and total charges per patient. We first estimated city-specific results and the combined results by random-effect models. A total of 2,017,750 hospital admissions were identified. A 10 µg/m3 increase in the 2 day moving average was associated with a 0.56% (95% CI: 0.14–0.99%) increase in all-cause hospital admissions and a 1.17% (95% CI: 0.44–1.90%) increase in total charges, and a 10 µg/m3 increase in the prior 2 days was associated with a 0.75% (95% CI: 0.34–1.16%) increase in total charges per patient. Short-term exposure to ambient PM2.5 was associated with increased all-cause hospital admissions, total charges, and total charges per patient.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhan Ren ◽  
Xingyuan Liu ◽  
Tianyu Liu ◽  
Dieyi Chen ◽  
Kuizhuang Jiao ◽  
...  

Abstract Background Positive associations between ambient PM2.5 and cardiorespiratory disease have been well demonstrated during the past decade. However, few studies have examined the adverse effects of PM2.5 based on an entire population of a megalopolis. In addition, most studies in China have used averaged data, which results in variations between monitoring and personal exposure values, creating an inherent and unavoidable type of measurement error. Methods This study was conducted in Wuhan, a megacity in central China with about 10.9 million people. Daily hospital admission records, from October 2016 to December 2018, were obtained from the Wuhan Information center of Health and Family Planning, which administrates all hospitals in Wuhan. Daily air pollution concentrations and weather variables in Wuhan during the study period were collected. We developed a land use regression model (LUR) to assess individual PM2.5 exposure. Time-stratified case-crossover design and conditional logistic regression models were adopted to estimate cardiorespiratory hospitalization risks associated with short-term exposure to PM2.5. We also conducted stratification analyses by age, sex, and season. Results A total of 2,806,115 hospital admissions records were collected during the study period, from which we identified 332,090 cardiovascular disease admissions and 159,365 respiratory disease admissions. Short-term exposure to PM2.5 was associated with an increased risk of a cardiorespiratory hospital admission. A 10 μg/m3 increase in PM2.5 (lag0–2 days) was associated with an increase in hospital admissions of 1.23% (95% CI 1.01–1.45%) and 1.95% (95% CI 1.63–2.27%) for cardiovascular and respiratory diseases, respectively. The elderly were at higher PM-induced risk. The associations appeared to be more evident in the cold season than in the warm season. Conclusions This study contributes evidence of short-term effects of PM2.5 on cardiorespiratory hospital admissions, which may be helpful for air pollution control and disease prevention in Wuhan.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mark Ashworth ◽  
◽  
Antonis Analitis ◽  
David Whitney ◽  
Evangelia Samoli ◽  
...  

Abstract Background Although the associations of outdoor air pollution exposure with mortality and hospital admissions are well established, few previous studies have reported on primary care clinical and prescribing data. We assessed the associations of short and long-term pollutant exposures with General Practitioner respiratory consultations and inhaler prescriptions. Methods Daily primary care data, for 2009–2013, were obtained from Lambeth DataNet (LDN), an anonymised dataset containing coded data from all patients (1.2 million) registered at general practices in Lambeth, an inner-city south London borough. Counts of respiratory consultations and inhaler prescriptions by day and Lower Super Output Area (LSOA) of residence were constructed. We developed models for predicting daily PM2.5, PM10, NO2 and O3 per LSOA. We used spatio-temporal mixed effects zero inflated negative binomial models to investigate the simultaneous short- and long-term effects of exposure to pollutants on the number of events. Results The mean concentrations of NO2, PM10, PM2.5 and O3 over the study period were 50.7, 21.2, 15.6, and 49.9 μg/m3 respectively, with all pollutants except NO2 having much larger temporal rather than spatial variability. Following short-term exposure increases to PM10, NO2 and PM2.5 the number of consultations and inhaler prescriptions were found to increase, especially for PM10 exposure in children which was associated with increases in daily respiratory consultations of 3.4% and inhaler prescriptions of 0.8%, per PM10 interquartile range (IQR) increase. Associations further increased after adjustment for weekly average exposures, rising to 6.1 and 1.2%, respectively, for weekly average PM10 exposure. In contrast, a short-term increase in O3 exposure was associated with decreased number of respiratory consultations. No association was found between long-term exposures to PM10, PM2.5 and NO2 and number of respiratory consultations. Long-term exposure to NO2 was associated with an increase (8%) in preventer inhaler prescriptions only. Conclusions We found increases in the daily number of GP respiratory consultations and inhaler prescriptions following short-term increases in exposure to NO2, PM10 and PM2.5. These associations are more pronounced in children and persist for at least a week. The association with long term exposure to NO2 and preventer inhaler prescriptions indicates likely increased chronic respiratory morbidity.


Author(s):  
Yuxiong Chen ◽  
Dehui Kong ◽  
Jia Fu ◽  
Yongqiao Zhang ◽  
Yakun Zhao ◽  
...  

Author(s):  
Jiyoung Shin ◽  
Jongmin Oh ◽  
In Sook Kang ◽  
Eunhee Ha ◽  
Wook Bum Pyun

Background/Aim: Previous studies have suggested that the short-term ambient air pollution and temperature are associated with myocardial infarction. In this study, we aimed to conduct a time-series analysis to assess the impact of fine particulate matter (PM2.5) and temperature on acute myocardial infarction (AMI) among adults over 20 years of age in Korea by using the data from the Korean National Health Information Database (KNHID). Methods: The daily data of 192,567 AMI cases in Seoul were collected from the nationwide, population-based KNHID from 2005 to 2014. The monitoring data of ambient PM2.5 from the Seoul Research Institute of Public Health and Environment were also collected. A generalized additive model (GAM) that allowed for a quasi-Poisson distribution was used to analyze the effects of PM2.5 and temperature on the incidence of AMI. Results: The models with PM2.5 lag structures of lag 0 and 2-day averages of lag 0 and 1 (lag 01) showed significant associations with AMI (Relative risk [RR]: 1.011, CI: 1.003–1.020 for lag 0, RR: 1.010, CI: 1.000–1.020 for lag 01) after adjusting the covariates. Stratification analysis conducted in the cold season (October–April) and the warm season (May–September) showed a significant lag 0 effect for AMI cases in the cold season only. Conclusions: In conclusion, acute exposure to PM2.5 was significantly associated with AMI morbidity at lag 0 in Seoul, Korea. This increased risk was also observed at low temperatures.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 420 ◽  
Author(s):  
Daniel Malashock ◽  
Haider Khwaja ◽  
Zafar Fatmi ◽  
Azhar Siddique ◽  
Yi Lu ◽  
...  

This study investigated the association between black carbon (BC) exposure and hospital admissions (HAs) and outpatient department/emergency room (OPD/ER) visits for cardiovascular diseases (CVD) among residents of Karachi, the largest city in Pakistan. We measured daily concentrations of BC in fine particulate matter (PM2.5) and collected records of HAs and OPD/ER visits for CVD from 2 major tertiary care hospitals serving Karachi for 6 weeks continuously during each quarter over 1 year (August 2008–August 2009). We subsequently analyzed daily counts of hospital and BC data over 0–3 lag days. Daily mean BC concentrations varied from 1 to 32 µg/m3. Results suggest that BC concentrations are associated with CVD HAs and OPD/ER visits. However, associations were generally only observed when modeled with BC from Tibet Center, the commercial-residential site, as compared to Korangi, the industrial-residential site. Overall, low statistical significance suggests that while BC may be a valuable indicator for CVD health risks from combustion-derived particles, further evaluation of the constituents of PM2.5 and their relative contributions to CVD health impacts is necessary.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kent G Meredith ◽  
C A Pope ◽  
Joseph B Muhlestein ◽  
Jeffrey L Anderson ◽  
John B Cannon ◽  
...  

Introduction: Air pollution is associated with greater cardiovascular event risk, but which types of events and the specific at-risk individuals remain unknown. Hypothesis: Short-term exposure to fine particulate matter (PM 2.5 ) is associated with greater risk of acute coronary syndromes (ACS), including ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina (USA). Methods: ACS events treated at Intermountain Healthcare hospitals in Utah’s urban Wasatch Front region between September 10, 1993 and May 15, 2014 were included if the patient resided in that area (N=16,314). A time-stratified case-crossover design was performed matching the PM 2.5 exposure at the time of event with periods when the event did not occur (referent), for STEMI, NSTEMI, and USA. Patients served as their own controls. Odds ratios (OR) were determined for exposure threshold versus linear, non-threshold models. Results: In STEMI, NSTEMI, and USA patients, age averaged 62, 64, and 63 years; males constituted 73%, 66%, and 68%; current or past smoking was prevalent in 33%, 25%, and 26%; and significant coronary artery disease (CAD) (defined as ≥1 coronary with ≥70% stenosis) was found among 95%, 75%, and 74%, respectively. Short-term PM 2.5 exposure was associated with ACS events (Table). Conclusions: Short-term exposure of PM 2.5 was strongly associated with greater risk of STEMI, especially in patients with angiographic CAD. No association with NSTEMI was found, and only a weak effect for USA. This study supports a PM 2.5 exposure threshold of 25 μg/m 3 , below which little exposure effect is seen, while the effect is linear above that level.


Sign in / Sign up

Export Citation Format

Share Document