scholarly journals Effects of exposure to direct and secondhand hookah and e-cigarette aerosols on ambient air quality and cardiopulmonary health in adults and children: protocol for a panel study

BMJ Open ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. e029490 ◽  
Author(s):  
Jenni Shearston ◽  
Lily Lee ◽  
James Eazor ◽  
Saher Meherally ◽  
Su Hyun Park ◽  
...  

IntroductionUse of alternative nicotine delivery systems, such as electronic cigarettes and hookahs, has increased dramatically in the USA, but limited research has been conducted on the secondhand effects of these products, especially in children. The objective of this study is to assess the cardiopulmonary effects of e-cigarette and hookah use in vaping and smoking adults, and in non-smoking/non-vaping adults and children exposed to secondhand particles and gases.Methods and analysisThis study uses a pre/post design, with four groups: two control groups (non-smoking/non-vaping and cigarette smoking) and two test groups (hookah smoking and e-cigarette vaping). Participants will be recruited by household, so that each home includes one smoking or vaping adult and one non-smoking/non-vaping adult and/or child (5–18 years). Non-smoking/non-vaping homes include an adult and child who do not smoke or vape and do not live with individuals who do. Air quality measures will be completed during a household smoking or vaping session (ambient air for non-smoking/non-vaping group), while cardiopulmonary measures and biological samples will be taken directly before and after the smoking/vaping session, and again 24 hours later, for all participants. Air quality measures include carbon monoxide, black carbon, particulate matter, trace elements, nicotine and carbonyls; cardiopulmonary measures include heart rate variability, blood pressure, pulmonary function and exhaled carbon monoxide; biological samples will assess cotinine, inflammatory cytokines and biomarkers in urine, saliva and nasal mucosa.Ethics and disseminationThis study was approved by the Institutional Review Board at New York University School of Medicine (s16-02226 and s17-01143). Special attention was given to the inclusion of children, who are likely significantly impacted by the use of these products at home, and thus should be included in research. Results of the study will be distributed at conferences, in peer-reviewed journals and to relevant public health authorities for use in developing policy.

2016 ◽  
Author(s):  
Wan Jiao ◽  
Gayle Hagler ◽  
Ronald Williams ◽  
Robert Sharpe ◽  
Ryan Brown ◽  
...  

Abstract. Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low cost, continuous and commercially-available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ~ 2 km area in Southeastern U.S. Co-location of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as whether multiple identical sensors reproduced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, −0.25 to 0.76, −0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r  0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in sampling days could be used in a correction algorithm to improve the agreement. Maximum improvement in agreement with a reference, incorporating all factors, was observed for an NO2 sensor (multiple correlation coefficient R2adj-orig = 0.57, R2adj-final = 0.81); however, other sensors showed no apparent improvement in agreement. A four-node sensor network was successfully able to capture ozone (2 nodes) and PM (4 nodes) data for an 8 month period of time and show expected diurnal concentration patterns, as well as potential ozone titration due to near-by traffic emissions. Overall, this study demonstrates a straightforward methodology for establishing low-cost air quality sensor performance in a real-world setting and demonstrates the feasibility of deploying a local sensor network to measure ambient air quality trends.


2021 ◽  
pp. tobaccocontrol-2020-056437
Author(s):  
Jenni A Shearston ◽  
James Eazor ◽  
Lily Lee ◽  
M J Ruzmyn Vilcassim ◽  
Taylor A Reed ◽  
...  

IntroductionA major site of secondhand smoke exposure for children and adults is the home. Few studies have evaluated the impact of e-cigarette or hookah use on home air quality, despite evidence finding toxic chemicals in secondhand e-cigarette aerosols and hookah smoke. We assessed the effect of e-cigarette and hookah use on home air quality and compared it with air quality in homes where cigarettes were smoked and where no smoking or e-cigarette use occurred.MethodsNon-smoking homes and homes where e-cigarettes, hookah or cigarettes were used were recruited in the New York City area (n=57) from 2015 to 2019. Particulate matter with diameter less than 2.5 µm (PM2.5), black carbon and carbon monoxide (CO) were measured during a smoking or vaping session, both in a ‘primary’ smoking room and in an adjacent ‘secondary’ room where no smoking or vaping occurred. Log transformed data were compared with postanalysis of variance Tukey simultaneous tests.ResultsUse of hookah significantly increased PM2.5 levels compared with non-smoking homes, in both the primary and secondary rooms, while use of e-cigarettes increased PM2.5 levels only in primary rooms. Additionally, in-home use of hookah resulted in greater CO concentrations than the use of cigarettes in primary rooms.ConclusionsUse of e-cigarettes or hookah increases air pollution in homes. For hookah, increases in PM2.5 penetrated even into rooms adjacent to where smoking occurs. Extending smoke-free rules inside homes to include e-cigarette and hookah products is needed to protect household members and visitors from passive exposure to harmful aerosols and gases.


Author(s):  
Alan H. Lockwood

The effects of climate change on air quality are difficult to model due to the large number of unpredictable variables. Hotter temperatures favor ozone production. Higher atmospheric water content may blunt this effect in some regions. Higher levels of natural volatile organic compounds (VOCs), such as terpenes from plants, are likely to act synergistically with anthropogenic VOCs to favor ozone production. Droughts increase wildfire risks that produce particulate pollution and carbon monoxide, a VOC involved in ozone production. Some models predict increased ozone concentrations in many urban settings. Future revisions of National Ambient Air Quality Standards, a process driven by politics and science, should consider these effects.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Motoyuki Nakao ◽  
Keiko Yamauchi ◽  
Satoshi Mitsuma ◽  
Hisamitsu Omori ◽  
Yoko Ishihara

2018 ◽  
Vol 75 (5) ◽  
pp. 382-388 ◽  
Author(s):  
Sheryl Magzamen ◽  
Assaf P Oron ◽  
Emily R Locke ◽  
Vincent S Fan

BackgroundStudies have linked ambient air pollution to chronic obstructive pulmonary disease (COPD) healthcare encounters. However, the association between air quality and rescue medication use is unknown.ObjectivesWe assessed the role of air pollution exposure for increased short-acting beta-2-agonist (SABA) use in patients with COPD through use of remote monitoring technology.MethodsParticipants received a portable electronic inhaler sensor to record the date, time and location for SABA use over a 3-month period. Ambient air pollution data and meteorological data were collected from a centrally located federal monitoring station. Mixed-effects Poisson regression was used to examine the association of daily inhaler use with pollutant levels. Four criteria pollutants (PM2.5, PM10, O3 and NO2), two particulate matter species (elemental carbon (EC) and organic carbon), estimated coarse fraction of PM10 (PM10–2.5) and four multipollutant air quality measures were each examined separately, adjusting for covariates that passed a false discovery rate (FDR) screening.ResultsWe enrolled 35 patients with COPD (94.3% male and mean age: 66.5±8.5) with a mean forced expiratory volume in 1 s (FEV1) % predicted of 44.9+17.2. Participants had a median of 92 observation days (range 52–109). Participants’ average SABA inhaler use ranged from 0.4 to 13.1 puffs/day (median 2.8). Controlling for supplemental oxygen use, long-acting anticholinergic use, modified Medical Research Council Dyspnoea Scale and influenza season, an IQR increase in PM10 concentration (8.0 µg/m3) was associated with a 6.6% increase in daily puffs (95% CI 3.5% to 9.9%; FDR <0.001). NO2 and EC concentration were also significantly associated with inhaler use (3.9% and 2.9% per IQR increase, respectively).ConclusionsExposure to increased ambient air pollution were associated with a significant increase in SABA use for patients with COPD residing in a low-pollution area.


Sign in / Sign up

Export Citation Format

Share Document