scholarly journals Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States

Author(s):  
Wan Jiao ◽  
Gayle Hagler ◽  
Ronald Williams ◽  
Robert Sharpe ◽  
Ryan Brown ◽  
...  

Abstract. Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low cost, continuous and commercially-available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ~ 2 km area in Southeastern U.S. Co-location of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as whether multiple identical sensors reproduced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, −0.25 to 0.76, −0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r  0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in sampling days could be used in a correction algorithm to improve the agreement. Maximum improvement in agreement with a reference, incorporating all factors, was observed for an NO2 sensor (multiple correlation coefficient R2adj-orig = 0.57, R2adj-final = 0.81); however, other sensors showed no apparent improvement in agreement. A four-node sensor network was successfully able to capture ozone (2 nodes) and PM (4 nodes) data for an 8 month period of time and show expected diurnal concentration patterns, as well as potential ozone titration due to near-by traffic emissions. Overall, this study demonstrates a straightforward methodology for establishing low-cost air quality sensor performance in a real-world setting and demonstrates the feasibility of deploying a local sensor network to measure ambient air quality trends.

2016 ◽  
Vol 9 (11) ◽  
pp. 5281-5292 ◽  
Author(s):  
Wan Jiao ◽  
Gayle Hagler ◽  
Ronald Williams ◽  
Robert Sharpe ◽  
Ryan Brown ◽  
...  

Abstract. Advances in air pollution sensor technology have enabled the development of small and low-cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low-cost, continuous, and commercially available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding  ∼ 2 km area in the southeastern United States. Collocation of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as the degree to which multiple identical sensors produced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, −0.25 to 0.76, and −0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r < 0.5) with a reference monitor and erroneously high concentration values. A wide variety of particulate matter (PM) sensors were tested with variable results – some sensors had very high agreement (e.g., r =  0.99) between identical sensors but moderate agreement with a reference PM2.5 monitor (e.g., r =  0.65). For select sensors that had moderate to strong correlation with reference monitors (r > 0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in number of sampling days could be used in a correction algorithm to improve the agreement. Maximum improvement in agreement with a reference, incorporating all factors, was observed for an NO2 sensor (multiple correlation coefficient R2adj-orig = 0.57, R2adj-final = 0.81); however, other sensors showed no apparent improvement in agreement. A four-node sensor network was successfully able to capture ozone (two nodes) and PM (four nodes) data for an 8-month period of time and show expected diurnal concentration patterns, as well as potential ozone titration due to nearby traffic emissions. Overall, this study demonstrates the performance of emerging air quality sensor technologies in a real-world setting; the variable agreement between sensors and reference monitors indicates that in situ testing of sensors against benchmark monitors should be a critical aspect of all field studies.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 114
Author(s):  
Jiří Bílek ◽  
Ondřej Bílek ◽  
Petr Maršolek ◽  
Pavel Buček

Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM).


Author(s):  
Alan H. Lockwood

The effects of climate change on air quality are difficult to model due to the large number of unpredictable variables. Hotter temperatures favor ozone production. Higher atmospheric water content may blunt this effect in some regions. Higher levels of natural volatile organic compounds (VOCs), such as terpenes from plants, are likely to act synergistically with anthropogenic VOCs to favor ozone production. Droughts increase wildfire risks that produce particulate pollution and carbon monoxide, a VOC involved in ozone production. Some models predict increased ozone concentrations in many urban settings. Future revisions of National Ambient Air Quality Standards, a process driven by politics and science, should consider these effects.


Author(s):  
Andi Dala Aprilla ◽  
Rafidah Rafidah

ABSTRACT     Air pollution causes changes in the composition of air from its normal state. One of the triggers for air pollution such as Carbon Monoxide (CO) and Sulfur Dioxide (SO2). The presence of CO and SO2 in basements with a certain amount and being in a long time will disrupt human health. The objective of the research is to determine the air quality at Makassar Trans Studio. The design of the research is observational research using descriptive approach through measuring levels of carbon monoxide and sulfur dioxide using Odalog 7000. The result of the research shows that on weekdays the levels of Carbon Monoxide (CO) for daytime were 1.6 bds while at night it was 2.4 bds. While sulfur dioxide (SO2) for the daytime is 0.01 bds while at night is 0 bds. While the holiday of carbon monoxide (CO) for daytime is 3.9 bds while at night is 2.1 bds. While sulfur dioxide (SO2) for the daytime is 0.01 bds while at night is 0 bds. From these results the level of Carbon Monoxide (CO) is still below the specified quality standard (25 bds) and the levels of sulfur dioxide (SO2) are still below the standard set quality (2 bds). Based on the results of the study, it can be concluded that the air quality in parking basement of Makassar Trans Studio is still below the Threshold value according to SNI 19-0232-2005. It is recommended for the mall manager to always supervise and monitor the air filter and place the exhaust fan.


Author(s):  
Babatunde I. Awokola ◽  
Gabriel Okello ◽  
Kevin J. Mortimer ◽  
Christopher P. Jewell ◽  
Annette Erhart ◽  
...  

Ambient air pollution in urban cities in sub-Saharan Africa (SSA) is an important public health problem with models and limited monitoring data indicating high concentrations of pollutants such as fine particulate matter (PM2.5). On most global air quality index maps, however, information about ambient pollution from SSA is scarce. We evaluated the feasibility and practicality of longitudinal measurements of ambient PM2.5 using low-cost air quality sensors (Purple Air-II-SD) across thirteen locations in seven countries in SSA. Devices were used to gather data over a 30-day period with the aim of assessing the efficiency of its data recovery rate and identifying challenges experienced by users in each location. The median data recovery rate was 94% (range: 72% to 100%). The mean 24 h concentration measured across all sites was 38 µg/m3 with the highest PM2.5 period average concentration of 91 µg/m3 measured in Kampala, Uganda and lowest concentrations of 15 µg/m3 measured in Faraja, The Gambia. Kampala in Uganda and Nnewi in Nigeria recorded the longest periods with concentrations >250 µg/m3. Power outages, SD memory card issues, internet connectivity problems and device safety concerns were important challenges experienced when using Purple Air-II-SD sensors. Despite some operational challenges, this study demonstrated that it is reasonably practicable and feasible to establish a network of low-cost devices to provide data on local PM2.5 concentrations in SSA countries. Such data are crucially needed to raise public, societal and policymaker awareness about air pollution across SSA.


2020 ◽  
Author(s):  
Farid RAHAL ◽  
Noureddine BENABADJI ◽  
Mohamed BENCHERIF ◽  
Mohamed Menaouer BENCHERIF

Abstract In Algeria, air pollution is classified as a major risk by the law. However, this risk is underestimated because there is no operational network for measuring air quality on a continuous basis.Despite the heavy investments made to equip several cities with these measurement systems, they are out of order due to a lack of continuous financial support.The alternative to the absence of these air pollution measurement networks can come from the recent development of electrochemical sensor technologies for air quality monitoring which arouses a certain interest because of their miniaturization, low energy consumption and low cost.We developed a low-cost outdoor carbon monoxide analyzer called APOMOS (Air pollution Monitoring System) based on electrochemical sensor managed by microcontroller. An application developed with the Python language makes it possible to manage process and analyze the collected data.In order to validate the APOMOS system, the recorded measurements are compared with measurements taken by a conventional analyzer.Comparison of the measurements resulting from conventional analyzer and those resulting from the APOMOS system gives a coefficient of determination of 98.39 %.Two versions of this system have been designed. A fixed version and another embedded, equipped with a GPS sensor. These 2 variants were used in the city of Oran in Algeria to measure the concentration of carbon monoxide continuously.The targeted pollutant is carbon monoxide. However, the design of the APOMOS system allows its evolution in an easy way in order to integrate other sensors concerning the various atmospheric pollutants.


2020 ◽  
Author(s):  
Ramachandran Subramanian ◽  
Matthias Beekmann ◽  
Carl Malings ◽  
Anais Feron ◽  
Paola Formenti ◽  
...  

&lt;p&gt;Ambient air pollution is a leading cause of premature mortality across the world, with an estimated 258,000 deaths in Africa (UNICEF/GBD 2017). These estimated impacts have large uncertainties as many major cities in Africa do not have any ground-based air quality monitoring. The lack of data is due in part to the high cost of traditional monitoring equipment and the lack of trained personnel. As part of the &amp;#8220;Make Air Quality Great Again&amp;#8221; project under the &amp;#8220;Make Our Planet Great Again&amp;#8221; framework (MOPGA), we propose filling this data gap with low-cost sensors carefully calibrated against reference monitors.&lt;/p&gt;&lt;p&gt;Fifteen real-time affordable multi-pollutant (RAMP) monitors have been deployed in Abidjan, C&amp;#244;te d'Ivoire; Accra, Ghana; Kigali, Rwanda; Nairobi, Kenya; Niamey, Niger; and Zamdela, South Africa (near Johannesburg). The RAMPs use Plantower optical nephelometers to measure fine particulate matter mass (PM&lt;sub&gt;2.5&lt;/sub&gt;) and four Alphasense electrochemical sensors to detect pollutant gases including nitrogen dioxide (NO&lt;sub&gt;2&lt;/sub&gt;) and ozone (O&lt;sub&gt;3&lt;/sub&gt;).&lt;/p&gt;&lt;p&gt;Using a calibration developed in Cr&amp;#233;teil, France, the deployments thus far reveal morning and evening spikes in combustion-related air pollution. The median hourly NO&lt;sub&gt;2&lt;/sub&gt; in Accra and Nairobi for September-October 2019 was about 11 ppb; a similar value was observed across November-December 2019 in Zamdela. However, a previous long-term deployment of the RAMPs in Rwanda showed that, for robust data quality, low-cost sensors must be collocated with traditional reference monitors to develop localized calibration models. Hence, we acquired regulatory-grade PM&lt;sub&gt;2.5&lt;/sub&gt;, NO&lt;sub&gt;2&lt;/sub&gt;, and O&lt;sub&gt;3&lt;/sub&gt; monitors for Abidjan and Accra. We also collocated RAMPs with existing reference monitors in Zamdela, Kigali, Abidjan, and Lamto (a rural site in C&amp;#244;te d'Ivoire). In this talk, we will present results on spatio-temporal variability of collocation-based sensor calibrations across these different cities, source identification, and challenges and plans for future expansion.&lt;/p&gt;


Author(s):  
Babatunde I. Awokola ◽  
Gabriel Okello ◽  
Kevin J. Mortimer ◽  
Christopher P. Jewell ◽  
Annette Erhart ◽  
...  

Urban cities in sub-Saharan Africa (SSA) are faced with ambient air pollution. This is an important public health problem with models and limited monitoring data indicating high concentrations of pollutants such as fine particulate matter (PM2.5). Going through most global air quality index maps, however, information about ambient pollution from SSA is scarce. We evaluated the feasibility and practicality of longitudinal measurements of ambient PM2.5 using low-cost air quality sensors (Purple Air-II-SD) across thirteen locations in seven countries in SSA. Devices were used to gather data over a 30-day period with the aim of assessing the efficiency of its data recovery rate and identifying challenges experienced by users in each location. The median data recovery rate was 94% (range: 72% to 100%). The mean 24-hour concentration measured across all sites was 38 &micro;g/m3 with the highest PM2.5 period average concentration of 91 &micro;g/m3 measured in Kampala, Uganda and lowest concentrations of 15 &micro;g/m3 measured in Faraja, The Gambia. Kampala-Uganda and Nnewi-Nigeria recorded the longest periods with concentrations&gt;250&micro;g/m3. Power outages, SD memory card issues, internet connectivity problems and device safety concerns were important challenges experienced when using Purple Air-II-SD sensors. Despite some operational challenges, this study demonstrated that it is reasonably practicable and feasible to establish a network of low-cost devices to provide data on local PM2.5 concentrations in SSA countries. Such data are crucially needed to raise public-, societal and policymaker awareness about air pollution across SSA.


2021 ◽  
Vol 9 (12) ◽  
pp. 453-461
Author(s):  
Mirnes Durakovic ◽  
◽  
Azrudin Husika ◽  
Halim Prcanovic ◽  
Sanela Beganovic ◽  
...  

According to the World Health Organization (WHO), air pollution is the largest single environmental risk to public health. According to the latest estimate of this organization, 9 out of 10 people on the planet breathe polluted air. The development of industry in the relatively small Zenica valley reflected on air quality in the city of Zenica. The problem of high air pollution due to emissions of pollutants from industrial sources, traffic, and individual furnaces, burning of environmentally unsuitable fuels containing high sulfur and ash content has been present in the City of Zenica for a long time. In addition, the low wind speed during the year, which ranges up to 1.5 m/s, with unfavorable temperature inversions, causes the concentrations of pollutants in the air to reach alarmingly high values in a short period. In the wider area of the City of Zenica, air quality has been monitored since 1978 in the network of stationary stations. The paper presents results of air quality monitoring which are analyzed at the Institute Kemal Kapetanovic in Zenica for the sampling period from 01.01.2019. to 31.12.2020. years. Air quality monitoring included sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter (PM10) at three locations in the wider area of the city of Zenica. In the wider area of the City of Zenica, air quality has been monitored since 1978 in the network of stationary stations. The paper presents the processed results of air quality monitoring which are analyzed at the Institute Kemal Kapetanovic in Zenica for the sampling period from 01.01.2019 to 31.12.2020. The measured concentrations of pollutants in the ambient air indicate that during the heating season, i.e. the winter months, the air quality in the urban and suburban areas of the city of Zenica is very poor. The data show that the highest hourly concentration of sulfur dioxide was recorded in December at the measuring station AMS Tetovo in the amount of 1100.59 µg/m3, which is located in the settlement next to the metallurgical facilities of the industrial zone Zenica.


Sign in / Sign up

Export Citation Format

Share Document