scholarly journals Application of human factors to improve usability of clinical decision support for diagnostic decision-making: a scenario-based simulation study

2019 ◽  
Vol 29 (4) ◽  
pp. 329-340
Author(s):  
Pascale Carayon ◽  
Peter Hoonakker ◽  
Ann Schoofs Hundt ◽  
Megan Salwei ◽  
Douglas Wiegmann ◽  
...  

ObjectiveIn this study, we used human factors (HF) methods and principles to design a clinical decision support (CDS) that provides cognitive support to the pulmonary embolism (PE) diagnostic decision-making process in the emergency department. We hypothesised that the application of HF methods and principles will produce a more usable CDS that improves PE diagnostic decision-making, in particular decision about appropriate clinical pathway.Materials and methodsWe conducted a scenario-based simulation study to compare a HF-based CDS (the so-called CDS for PE diagnosis (PE-Dx CDS)) with a web-based CDS (MDCalc); 32 emergency physicians performed various tasks using both CDS. PE-Dx integrated HF design principles such as automating information acquisition and analysis, and minimising workload. We assessed all three dimensions of usability using both objective and subjective measures: effectiveness (eg, appropriate decision regarding the PE diagnostic pathway), efficiency (eg, time spent, perceived workload) and satisfaction (perceived usability of CDS).ResultsEmergency physicians made more appropriate diagnostic decisions (94% with PE-Dx; 84% with web-based CDS; p<0.01) and performed experimental tasks faster with the PE-Dx CDS (on average 96 s per scenario with PE-Dx; 117 s with web-based CDS; p<0.001). They also reported lower workload (p<0.001) and higher satisfaction (p<0.001) with PE-Dx.ConclusionsThis simulation study shows that HF methods and principles can improve usability of CDS and diagnostic decision-making. Aspects of the HF-based CDS that provided cognitive support to emergency physicians and improved diagnostic performance included automation of information acquisition (eg, auto-populating risk scoring algorithms), minimisation of workload and support of decision selection (eg, recommending a clinical pathway). These HF design principles can be applied to the design of other CDS technologies to improve diagnostic safety.

2018 ◽  
Vol 25 (7) ◽  
pp. 841-847 ◽  
Author(s):  
Ashley N D Meyer ◽  
Pamela J Thompson ◽  
Arushi Khanna ◽  
Samir Desai ◽  
Benji K Mathews ◽  
...  

Abstract Objective Mobile applications for improving diagnostic decision making often lack clinical evaluation. We evaluated if a mobile application improves generalist physicians’ appropriate laboratory test ordering and diagnosis decisions and assessed if physicians perceive it as useful for learning. Methods In an experimental, vignette study, physicians diagnosed 8 patient vignettes with normal prothrombin times (PT) and abnormal partial thromboplastin times (PTT). Physicians made test ordering and diagnosis decisions for 4 vignettes using each resource: a mobile app, PTT Advisor, developed by the Centers for Disease Control and Prevention (CDC)’s Clinical Laboratory Integration into Healthcare Collaborative (CLIHC); and usual clinical decision support. Then, physicians answered questions regarding their perceptions of the app’s usefulness for diagnostic decision making and learning using a modified Kirkpatrick Training Evaluation Framework. Results Data from 368 vignettes solved by 46 physicians at 7 US health care institutions show advantages for using PTT Advisor over usual clinical decision support on test ordering and diagnostic decision accuracy (82.6 vs 70.2% correct; P &lt; .001), confidence in decisions (7.5 vs 6.3 out of 10; P &lt; .001), and vignette completion time (3:02 vs 3:53 min.; P = .06). Physicians reported positive perceptions of the app’s potential for improved clinical decision making, and recommended it be used to address broader diagnostic challenges. Conclusions A mobile app, PTT Advisor, may contribute to better test ordering and diagnosis, serve as a learning tool for diagnostic evaluation of certain clinical disorders, and improve patient outcomes. Similar methods could be useful for evaluating apps aimed at improving testing and diagnosis for other conditions.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 100488
Author(s):  
Rachel Gold ◽  
Mary Middendorf ◽  
John Heintzman ◽  
Joan Nelson ◽  
Patrick O'Connor ◽  
...  

2019 ◽  
Vol 69 (689) ◽  
pp. e809-e818 ◽  
Author(s):  
Sophie Chima ◽  
Jeanette C Reece ◽  
Kristi Milley ◽  
Shakira Milton ◽  
Jennifer G McIntosh ◽  
...  

BackgroundThe diagnosis of cancer in primary care is complex and challenging. Electronic clinical decision support tools (eCDSTs) have been proposed as an approach to improve GP decision making, but no systematic review has examined their role in cancer diagnosis.AimTo investigate whether eCDSTs improve diagnostic decision making for cancer in primary care and to determine which elements influence successful implementation.Design and settingA systematic review of relevant studies conducted worldwide and published in English between 1 January 1998 and 31 December 2018.MethodPreferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched, and a consultation of reference lists and citation tracking was carried out. Exclusion criteria included the absence of eCDSTs used in asymptomatic populations, and studies that did not involve support delivered to the GP. The most relevant Joanna Briggs Institute Critical Appraisal Checklists were applied according to study design of the included paper.ResultsOf the nine studies included, three showed improvements in decision making for cancer diagnosis, three demonstrated positive effects on secondary clinical or health service outcomes such as prescribing, quality of referrals, or cost-effectiveness, and one study found a reduction in time to cancer diagnosis. Barriers to implementation included trust, the compatibility of eCDST recommendations with the GP’s role as a gatekeeper, and impact on workflow.ConclusioneCDSTs have the capacity to improve decision making for a cancer diagnosis, but the optimal mode of delivery remains unclear. Although such tools could assist GPs in the future, further well-designed trials of all eCDSTs are needed to determine their cost-effectiveness and the most appropriate implementation methods.


2021 ◽  
Vol 37 (S1) ◽  
pp. 21-22
Author(s):  
Carla Fernandez-Barceló ◽  
Elena Calvo-Cidoncha ◽  
Laura Sampietro-Colom

IntroductionIn the past decade, health technology assessment (HTA) has narrowed its scope to the analysis of mainly clinical and economic benefits. However, twenty-first century technology challenges require the need for more holistic assessments to obtain accurate recommendations for decision-making, as it was in HTA's foundations. VALues In Doing Assessments of health TEchnologies (VALIDATE) methodology approaches complex technologies holistically to provide a deeper understanding of the problem through analysis of the heterogeneity of stakeholders’ views, allowing for more comprehensive HTAs. This study aimed to assess a pharmaceutical clinical decision support system (CDSS) using VALIDATE.MethodsA systematic review of the empirical evidence on CDSS was conducted according to PRISMA guidelines. PubMed, the Cochrane Library, and Web of Science databases were searched for literature published between 2000 and 2020. Additionally, a review of grey literature and semi-structured interviews with different hospital stakeholders (pharmacists, physicians, computer engineers, etc.) were conducted. Content analysis was used for data integration.ResultsPreliminary literature results indicated consensus regarding the effectiveness of CDSS. Nevertheless, when including multistakeholder views, CDSS appeared to not be fully accepted in clinical practice. The main reasons for this appeared to be alert fatigue and disruption of workflow. Preliminary results based on information from the literature were contrasted with stakeholder interview responses.ConclusionsIncorporation of facts and stakeholder values into the problem definition and scoping for a health technology is essential to properly conduct HTAs. The lack of an inclusive multistakeholder scoping can lead to inaccurate information, and in this particular case to suboptimal CDSS implementation concerning decision-making for the technology being evaluated.


Author(s):  
Jan Kalina

The complexity of clinical decision-making is immensely increasing with the advent of big data with a clinical relevance. Clinical decision systems represent useful e-health tools applicable to various tasks within the clinical decision-making process. This chapter is devoted to basic principles of clinical decision support systems and their benefits for healthcare and patient safety. Big data is crucial input for clinical decision support systems and is helpful in the task to find the diagnosis, prognosis, and therapy. Statistical challenges of analyzing big data in psychiatry are overviewed, with a particular interest for psychiatry. Various barriers preventing telemedicine tools from expanding to the field of mental health are discussed. The development of decision support systems is claimed here to play a key role in the development of information-based medicine, particularly in psychiatry. Information technology will be ultimately able to combine various information sources including big data to present and enforce a holistic information-based approach to psychiatric care.


Author(s):  
Manoj A. Thomas ◽  
Diya Suzanne Abraham ◽  
Dapeng Liu

Translational research (TR) is the harnessing of knowledge from basic science and clinical research to advance healthcare. As a sister discipline, translational informatics (TI) concerns the application of informatics theories, methods, and frameworks to TR. This chapter builds upon TR concepts and aims to advance the use of machine learning (ML) and data analytics for improving clinical decision support. A federated machine learning (FML) architecture is described to aggregate multiple ML endpoints, and intermediate data analytic processes and products to output high quality knowledge discovery and decision making. The proposed architecture is evaluated for its operational performance based on three propositions, and a case for clinical decision support in the prediction of adult Sepsis is presented. The chapter illustrates contributions to the advancement of FML and TI.


2020 ◽  
pp. 167-186
Author(s):  
Steven Walczak

Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.


Sign in / Sign up

Export Citation Format

Share Document