scholarly journals Bile acid diarrhoea: pathophysiology, diagnosis and management

2020 ◽  
pp. flgastro-2020-101436
Author(s):  
Alexia Farrugia ◽  
Ramesh Arasaradnam

The actual incidence of bile acid diarrhoea (BAD) is unknown, however, there is increasing evidence that it is misdiagnosed in up to 30% with diarrhoea-predominant patients with irritable bowel syndrome. Besides this, it may also occur following cholecystectomy, infectious diarrhoea and pelvic chemoradiotherapy.BAD may result from either hepatic overproduction of bile acids or their malabsorption in the terminal ileum. It can result in symptoms such as bowel frequency, urgency, nocturnal defecation, excessive flatulence, abdominal pain and incontinence of stool. Bile acid synthesis is regulated by negative feedback loops related to the enterohepatic circulation, which are dependent on the farnesoid X receptor and fibroblast growth factor 19. Interruption of these feedback loops is thought to cause bile acid overproduction leading to BAD. This process may occur idiopathically or following a specific trigger such as cholecystectomy. There may also be an interplay with the gut microbiota, which has been reported to be significantly different in patients with severe BAD.Patients with suspected BAD are investigated in various ways including radionucleotide imaging such as SeHCAT scans (though this is not available worldwide) and blood tests. However, other methods such as bile acid measurement in stool (either spot test or 48 hours samples) and urine tests have been explored. Importantly, delay in diagnosis and treatment of BAD greatly affects patient’s quality of life and may double the overall cost of diagnosis.

Author(s):  
Frans Stellaard ◽  
Dieter Lütjohann

Regulation of bile acid metabolism is normally discussed as the regulation of bile acid synthesis, which serves to compensate for intestinal loss in order to maintain a constant pool size. After a meal, bile acids start cycling in the enterohepatic circulation. Farnesoid X receptor-dependent ileal and hepatic processes lead to negative feedback inhibition of bile acid synthesis. When the intestinal bile acid flux decreases, the inhibition of synthesis is released. The degree of inhibition of synthesis and the mechanism and degree of activation are still unknown. Moreover, in humans, a biphasic diurnal expression pattern of bile acid synthesis has been documented, indicating maximal synthesis around 3 pm and 9 pm. Quantitative data on the hourly synthesis schedule as compensation for intestinal loss are lacking. In this review, we describe the classical view on bile acid metabolism and present alternative concepts that are based on the overlooked feature that bile acids transit through the enterohepatic circulation very rapidly. A daily profile of the cycling and total bile acid pool sizes and potential controlled and uncontrolled mechanisms for synthesis are predicted. It remains to be elucidated by which mechanism clock genes interact with the Farnesoid X receptor-controlled regulation of bile acid synthesis. This mechanism could become an attractive target to enhance bile acid synthesis at night, when cholesterol synthesis is high, thus lowering serum LDL-cholesterol.


2021 ◽  
Vol 12 (2) ◽  
pp. 335-353
Author(s):  
Evette B. M. Hillman ◽  
Sjoerd Rijpkema ◽  
Danielle Carson ◽  
Ramesh P. Arasaradnam ◽  
Elizabeth M. H. Wellington ◽  
...  

Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.


2017 ◽  
Vol 292 (26) ◽  
pp. 11055-11069 ◽  
Author(s):  
Preeti Pathak ◽  
Hailiang Liu ◽  
Shannon Boehme ◽  
Cen Xie ◽  
Kristopher W. Krausz ◽  
...  

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2029 ◽  
Author(s):  
John YL Chiang

Bile acids are derived from cholesterol to facilitate intestinal nutrient absorption and biliary secretion of cholesterol. Recent studies have identified bile acids as signaling molecules that activate nuclear farnesoid X receptor (FXR) and membrane G protein-coupled bile acid receptor-1 (Gpbar-1, also known as TGR5) to maintain metabolic homeostasis and protect liver and other tissues and cells from bile acid toxicity. Bile acid homeostasis is regulated by a complex mechanism of feedback and feedforward regulation that is not completely understood. This review will cover recent advances in bile acid signaling and emerging concepts about the classic and alternative bile acid synthesis pathway, bile acid composition and bile acid pool size, and intestinal bile acid signaling and gut microbiome in regulation of bile acid homeostasis.


Hepatology ◽  
2012 ◽  
Vol 56 (3) ◽  
pp. 1034-1043 ◽  
Author(s):  
Bo Kong ◽  
Li Wang ◽  
John Y.L. Chiang ◽  
Youcai Zhang ◽  
Curtis D. Klaassen ◽  
...  

2009 ◽  
Vol 296 (5) ◽  
pp. G1119-G1129 ◽  
Author(s):  
Pilar Martínez-Fernández ◽  
Loreto Hierro ◽  
Paloma Jara ◽  
Luis Alvarez

Farnesoid X receptor (FXR) is a bile acid-sensing nuclear receptor that controls bile acid homeostasis. It has been suggested that downregulation of FXR contributes to the pathogenesis of an inherited disorder of bile secretion caused by mutations in ATP8B1. We have investigated the relationship between ATP8B1 knockdown and FXR downregulation in the human hepatoblastoma cell line HepG2. Transfection of HepG2 cells with ATP8B1 small interfering RNA (siRNA) duplexes led to a 60% reduction in the endogenous levels of ATP8B1 mRNA and protein and a concomitant decrease in FXR mRNA and protein content, as well as in FXR phosphorylation. This decrease was accompanied by a marked reduction in mRNA levels of a subset of FXR targets, such as bile salt export pump ( ABCB11), small heterodimer partner, and uridine 5′-diphosphate-glucuronosyltransferase. ATP8B1 inhibition specifically targeted FXR since mRNA expression of other prominent nuclear receptors, such as pregnane X receptor and constitutive androstane receptor, or liver-enriched transcription factors, such as hepatocyte nuclear factor 1α ( HNF-1α) and HNF-4α, was not altered. The expression of other key genes involved in bile acid synthesis, detoxification, and transport also remained unchanged upon ATP8B1 knockdown. Supporting the specificity of the effect, siRNA-mediated silencing of ABCB11, whose defect is associated with another inherited disorder of bile secretion, did not affect FXR expression. Treatment with the synthetic FXR agonist GW4064 was able to partially neutralize ATP8B1 siRNA-mediated FXR downregulation and fully counteract inhibition of FXR target genes. Collectively these findings indicate that ATP8B1 knockdown specifically downregulates FXR, and this action can be circumvented by treatment with FXR agonists.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Gang Wang ◽  
Tao Han ◽  
ShiJia Wang ◽  
Min Chen ◽  
Yueming Sun ◽  
...  

To investigate the role of the peroxisome proliferator-activated receptor-γ (PPARγ) in the progression of cholesterol gallstone disease (CGD), C57bl/6J mice were randomized to the following groups (n=7/group): L (lithogenic diet, LGD), LM (LGD+pioglitazone), CM (chow diet+pioglitazone), and NC (normal control, chow diet). Gallbladder stones were observed by microscopy. Histological gallbladder changes were assessed. Bile acids (BA) and cholesterol were measured in the serum, bile, and feces. Proteins and mRNA expression of genes involved in BA metabolism and enterohepatic circulation were assessed by western blotting and real-time RT-PCR. PPARγ activation was performed in LO2 cell by lentivirus transfection and in Caco2 cell by PPARγ agonist treatment. Downregulation of farnesoid X receptor (FXR) by small interference RNA (siRNA) was performed in L02 cells and Caco2 cells, respectively. Results showed that pharmacological activation of PPARγ by pioglitazone prevents cholesterol gallstone formation by increasing biliary BA synthesis and enterohepatic circulation. Activated PPARγ induced the expression of genes involved in enterohepatic circulation and bile acid synthesis (like PCG1α, BSEP, MRP2, MRP3, MRP4, NTCP, CYP7A1, CYP27A1, ASBT, OSTα, and OSTβ). Downregulation of FXR repressed expression of partial genes involved in BA enterohepatic circulation. These findings suggest a new function of PPARγ in preventing CGD by handling BA synthesis and transport through a FXR dependent or independent pathway.


Sign in / Sign up

Export Citation Format

Share Document