scholarly journals Regional homogeneity of intrinsic brain activity related to the main alexithymia dimensions

2018 ◽  
Vol 31 (1) ◽  
pp. e000003
Author(s):  
Han Dai ◽  
Li Mei ◽  
Mei Minjun ◽  
Sun Xiaofei

BackgroundAlexithymia is a multidimensional personality construct.ObjectiveThis study aims to investigate the neuronal correlates of each alexithymia dimension by examining the regional homogeneity (ReHo) of intrinsic brain activity in a resting situation.MethodsFrom university freshmen, students with alexithymia and non-alexithymia were recruited. Their alexithymic traits were assessed using the Toronto Alexithymia Scale-20. The ReHo was examined using a resting-state functional MRI approach.ResultsThis study suggests significant group differences in ReHo in multiple brain regions distributed in the frontal lobe, parietal lobe, temporal lobe, occipital lobe and insular cortex. However, only the ReHo in the insula was positively associated with difficulty identifying feelings, a main dimension of alexithymia. The ReHo in the lingual gyrus, precentral gyrus and postcentral gyrus was positively associated with difficulty describing feelings in participants with alexithymia. Lastly, the ReHo in the right dorsomedial prefrontal cortex (DMPFC_R) was negatively related to the externally oriented thinking style of participants with alexithymia.ConclusionIn conclusion, these results suggest that the main dimensions of alexithymia are correlated with specific brain regions’ function, and the role of the insula, lingual gyrus, precentral gyrus, postcentral gyrus and DMPFC_R in the neuropathology of alexithymia should be further investigated.

2021 ◽  
pp. 1-29
Author(s):  
Kangyu Jin ◽  
Zhe Shen ◽  
Guoxun Feng ◽  
Zhiyong Zhao ◽  
Jing Lu ◽  
...  

Abstract Objective: A few former studies suggested there are partial overlaps in abnormal brain structure and cognitive function between Hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. Methods: 21 HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent Resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. Results: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL) and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG and left paracentral lobule but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MCCB in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. Conclusion: our results suggested the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


2020 ◽  
Author(s):  
Zhang Ran ◽  
Gong Ping ◽  
Ge Haitao

AbstractObjectiveTo study the abnormal brain regions of patients with Parkinson’s disease (PD) using multimodality MRI to provide complementary information for early detection for PD.Methods27 patients with early PD and 25 normal ageing volunteers were included in the study. Multimodality MRI data were acquired and processed to extract neuroimaging features to test the structural and functional changes using a two-sample t-test.ResultsThe changes of brain regions were disagreed for different modality MRI data between PD and normal ageing individuals. Nevertheless,the postcentral gyrus, precentral gyrus, lingual gyrus and paracentral lobule were significantly different for all three modalities.ConclusionMultimodality MRI data can reflect the structural and functional changes of PD, and reveal the hidden information which is of great significance to assist early detection for PD.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Yu ◽  
Liheng Chen ◽  
Qiaohong Wang ◽  
Lingzhen Hu ◽  
Qiuping Ding ◽  
...  

Objective.This study is aimed at investigating the characteristics of the spontaneous brain activity in inactive patients with nonneuropsychiatric systemic lupus erythematosus (non-NPSLE). Methods. Thirty-one female inactive patients with non-NPSLE and twenty healthy controls were examined by resting-state functional magnetic resonance imaging (RS-fMRI). Three amplitude methods including amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and percent amplitude of fluctuation (PerAF) (with and without standardization) were applied to evaluate the spontaneous brain activity. The correlation was performed between low-frequency oscillations and clinical and neuropsychological factors in inactive patients with non-NPSLE. Results. Compared to healthy controls, patients with non-NPSLE showed increased standardized ALFF (mALFF) in the left inferior temporal gyrus and left putamen, decreased PerAF in the right postcentral gyrus and bilateral precentral gyrus, and increased standardized PerAF (mPerAF) in the left putamen and decreased mPerAF in the right postcentral gyrus and bilateral precentral gyrus. By standardized fALFF (mfALFF), no significant brain regions were found between the two groups. Correlation analysis revealed significantly positive correlations between glucocorticoid dose and PerAF in the right precentral gyrus and mPerAF in the left putamen, and Complement 3 (C3) and mPerAF in the right postcentral gyrus. There was a significant negative correlation between C3 and mALFF in the left putamen. Conclusion. Abnormal low-frequency oscillations in multiple brain regions were found in inactive patients with non-NPSLE, indicating that the alteration of mALFF, PerAF, and mPerAF in specific brain regions might be an imaging biomarker of brain dysfunction in inactive patients with non-NPSLE.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Han Lv ◽  
Pengfei Zhao ◽  
Zhaohui Liu ◽  
Guopeng Wang ◽  
Rong Zeng ◽  
...  

Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have shown that neurological changes are important findings in vascular pulsatile tinnitus (PT) patients. Here, we utilized rs-fMRI to measure the amplitude of low-frequency fluctuations (ALFF) in forty patients with unilateral PT and forty age-, gender-, and education-matched normal control subjects. Two different frequency bands (slow-4, 0.027–0.073 Hz, and slow-5, 0.010–0.027 Hz, which are more sensitive to subcortical and cortical neurological signal changes, resp.) were analyzed to examine the intrinsic brain activity in detail. Compared to controls, PT patients had increased ALFF values mainly in the PCu, bilateral IPL (inferior parietal lobule), left IFG (inferior frontal gyrus), and right IFG/anterior insula and decreased ALFF values in the multiple occipital areas including bilateral middle-inferior occipital lobe. For the differences of the two frequency bands, widespread ALFF differences were observed. The ALFF abnormalities in aMPFC/ACC, PCu, right IPL, and some regions of occipital and parietal cortices were greater in the slow-5 band compared to the slow-4 band. Additionally, the THI score of PT patients was positively correlated with changes in slow-5 and slow-4 band in PCu. Pulsatile tinnitus is a disease affecting the neurological activities of multiple brain regions. Slow-5 band is more sensitive in detecting the alternations. Our results also indicated the importance of pathophysiological investigations in patients with pulsatile tinnitus in the future.


2021 ◽  
Author(s):  
Yilei Chen ◽  
Yingjie Kang ◽  
Shilei Luo ◽  
Shanshan Liu ◽  
Bo Wang ◽  
...  

Abstract Background: The underlying neurological mechanism of acupuncture treatment in migraine without aura (MwoA) remains unclear. Therefore, we explored the dynamic alterations of intrinsic brain activity and effective connectivity in patients with MwoA after acupuncture treatment.Methods:The fMRI scans were separately obtained at baseline, after the first and after the 12th acupuncture sessions in 40 patients with MwoA. The acupuncture treatments were finished within 6 weeks as twice a week. 36 matched healthy controls (HCs) were recruited and performed once fMRI scan. The dynamic amplitude of low-frequency fluctuation (dALFF) and dynamic granger causality analysis(GCA) were used to analyze the difference of different time points in patients with MwoA. The correlation analyses were performed in dALFF variability, dynamic effective connectivity (DEC) variability with clinical variables in patients with MwoA.Results:Compared with HCs, Patients with MwoA at baseline showed decreased dALFF variability in regions within rostral ventromedial medulla (RVM), the superior lobe of left cerebellum (Cerebelum_Crus1_L), the right inferior frontal gyrus, triangular part (IFGtriang.R), the right median cingulate and paracingulate gyri (DCG.R), the right precuneus (PCUN.R), and the left inferior parietal, supramarginal and angular gyri (IPL.L), increased dALFF variability only in the left inferior occipital gyrus (IOG.L). After acupuncture treatment, the decreased dALFF variability of the RVM, Cerebelum_Crus1_L , and PCUN.R progressively recovered, the RVM revealed gradually increased DEC variability to the right middle frontal gyrus (MFG.R), the left insula (INS.L), the right precentral gyrus (PreCG.R), and the right supramarginal gyrus (SMG.R). And enhanced DEC variability from the right fusiform gyrus (FFG.R) to RVM. Furthermore, the increased DEC variability were found from Cerebelum_Crus1_L to the left middle occipital gyrus (MOG.L) and the left precentral gyrus (PreCG.L), from PCUN.R to the right thalamus (THA.R). These dALFF variabilities were significantly positive correlated with frequency of migraine attack and negative correlated with disease duration at baseline, dynamic GCA coefficients were significantly positive correlated with Migraine-Specific Quality of Life Questionnaire (MSQ) score, negative correlated with frequency of migraine attack and visual analog scale (VAS) score postacupuncture treatment.Conclusions:Our results provide insight into dynamic alterations from the perspective of dynamic local brain activity and effective connectivity for the understanding mechanisms of cumulative therapeutic effect of acupuncture in patients with MwoA.Trial registration: ChiCTR, ChiCTR1900023105. Registered 11 May 2019, http://www.chictr.org.cn/showproj.aspx?proj=36959.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Jian Guo ◽  
Ning Chen ◽  
Muke Zhou ◽  
Pian Wang ◽  
Li He

Background: Transient ischemic attack (TIA) can increase the risk of some neurologic dysfunctions, of which the mechanism remains unclear. Resting-state functional MRI (rfMRI) is suggested to be a valuable tool to study the relation between spontaneous brain activity and behavioral performance. However, little is known about whether the local synchronization of spontaneous neural activity is altered in TIA patients. The purpose of this study is to detect differences in regional spontaneous activities throughout the whole brain between TIAs and normal controls. Methods: Twenty one TIA patients suffered an ischemic event in the right hemisphere and 21 healthy volunteers were enrolled in the study. All subjects were investigated using cognitive tests and rfMRI. The regional homogeneity (ReHo) was calculate and compared between two groups. Then a correlation analysis was performed to explore the relationship between ReHo values of brain regions showing abnormal resting-state properties and clinical variables in TIA group. Results: Compared with controls, TIA patients exhibited decreased ReHo in right dorsolateral prefrontal cortex (DLPFC), right inferior prefrontal gyrus, right ventral anterior cingulate cortex and right dorsal posterior cingular cortex. Moreover, the mean ReHo in right DLPFC and right inferior prefrontal gyrus were significantly correlated with MoCA in TIA patients. Conclusions: Neural activity in the resting state is changed in patients with TIA. The positive correlation between regional homogeneity of rfMRI and cognition suggests that ReHo may be a promising tool to better our understanding of the neurobiological consequences of TIA.


2019 ◽  
Vol 61 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Pei-Wen Zhu ◽  
You Chen ◽  
Ying-Xin Gong ◽  
Nan Jiang ◽  
Wen-Feng Liu ◽  
...  

Background Neuroimaging studies revealed that trigeminal neuralgia was related to alternations in brain anatomical function and regional function. However, the functional characteristics of network organization in the whole brain is unknown. Purpose The aim of the present study was to analyze potential functional network brain-activity changes and their relationships with clinical features in patients with trigeminal neuralgia via the voxel-wise degree centrality method. Material and Methods This study involved a total of 28 trigeminal neuralgia patients (12 men, 16 women) and 28 healthy controls matched in sex, age, and education. Spontaneous brain activity was evaluated by degree centrality. Correlation analysis was used to examine the correlations between behavioral performance and average degree centrality values in several brain regions. Results Compared with healthy controls, trigeminal neuralgia patients had significantly higher degree centrality values in the right lingual gyrus, right postcentral gyrus, left paracentral lobule, and bilateral inferior cerebellum. Receiver operative characteristic curve analysis of each brain region confirmed excellent accuracy of the areas under the curve. There was a positive correlation between the mean degree centrality value of the right postcentral gyrus and VAS score (r = 0.885, P < 0.001). Conclusions Trigeminal neuralgia causes abnormal brain network activity in multiple brain regions, which may be related to underlying disease mechanisms.


2016 ◽  
Vol 46 (15) ◽  
pp. 3173-3185 ◽  
Author(s):  
C. Y. Shang ◽  
C. G. Yan ◽  
H. Y. Lin ◽  
W. Y. Tseng ◽  
F. X. Castellanos ◽  
...  

BackgroundMethylphenidate and atomoxetine are commonly prescribed for treating attention deficit hyperactivity disorder (ADHD). However, their therapeutic neural mechanisms remain unclear.MethodAfter baseline evaluation including cognitive testing of the Cambridge Neuropsychological Test Automated Battery (CANTAB), drug-naive children with ADHD (n = 46), aged 7–17 years, were randomly assigned to a 12-week treatment with methylphenidate (n = 22) or atomoxetine (n = 24). Intrinsic brain activity, including the fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo), was quantified via resting-state functional magnetic resonance imaging at baseline and week 12.ResultsReductions in inattentive symptoms were related to increased fALFF in the left superior temporal gyrus and left inferior parietal lobule for ADHD children treated with methylphenidate, and in the left lingual gyrus and left inferior occipital gyrus for ADHD children treated with atomoxetine. Hyperactivity/impulsivity symptom reductions were differentially related to increased fALFF in the methylphenidate group and to decreased fALFF in the atomoxetine group in bilateral precentral and postcentral gyri. Prediction analyses in the atomoxetine group revealed negative correlations between pre-treatment CANTAB simple reaction time and fALFF change in the left lingual gyrus and left inferior occipital gyrus, and positive correlations between pre-treatment CANTAB simple movement time and fALFF change in bilateral precentral and postcentral gyri and left precuneus, with a negative correlation between movement time and the fALFF change in the left lingual gyrus and the inferior occipital gyrus.ConclusionsOur findings suggest differential neurophysiological mechanisms for the treatment effects of methylphenidate and atomoxetine in children with ADHD.


Sign in / Sign up

Export Citation Format

Share Document