Evaluation of a completely automated tissue-sectioning machine for paraffin blocks

2011 ◽  
Vol 66 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Maristela L Onozato ◽  
Stephen Hammond ◽  
Mark Merren ◽  
Yukako Yagi

Tissue-sectioning automation can be a resourceful tool in processing anatomical pathology specimens. The advantages of an automated system compared with traditional manual sectioning are the invariable thickness, uniform orientation and fewer tissue-sectioning artefacts. This short report presents the design of an automated tissue-sectioning device and compares the sectioned specimens with normal manual tissue sectioning performed by an experienced histology technician. The automated system was easy to use, safe and the sectioned material showed acceptable quality with well-preserved morphology and tissue antigenicity. It is expected that the turnaround time will be improved in the near future.

2021 ◽  
Vol 59 (1) ◽  
pp. 155-163
Author(s):  
Mindy Kohlhagen ◽  
Surendra Dasari ◽  
Maria Willrich ◽  
MeLea Hetrick ◽  
Brian Netzel ◽  
...  

AbstractObjectivesA matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) method (Mass-Fix) as a replacement for gel-based immunofixation (IFE) has been recently described. To utilize Mass-Fix clinically, a validated automated method was required. Our aim was to automate the pre-analytical processing, improve positive specimen identification and ergonomics, reduce paper data storage and increase resource utilization without increasing turnaround time.MethodsSerum samples were batched and loaded onto a liquid handler along with reagents and a barcoded sample plate. The pre-analytical steps included: (1) Plating immunopurification beads. (2) Adding 10 μl of serum. (3) Bead washing. (4) Eluting the immunoglobulins (Igs), and reducing to separate the heavy and light Ig chains. The resulting plate was transferred to a second low-volume liquid handler for MALDI plate spotting. MALDI-TOF mass spectra were collected. Integrated in-house developed software was utilized for sample tracking, driving data acquisition, data analysis, history tracking, and result reporting. A total of 1,029 residual serum samples were run using the automated system and results were compared to prior electrophoretic results.ResultsThe automated Mass-Fix method was capable of meeting the validation requirements of concordance with IFE, limit of detection (LOD), sample stability and reproducibility with a low repeat rate. Automation and integrated software allowed a single user to process 320 samples in an 8 h shift. Software display facilitated identification of monoclonal proteins. Additionally, the process maintains positive specimen identification, reduces manual pipetting, allows for paper free tracking, and does not significantly impact turnaround time (TAT).ConclusionsMass-Fix is ready for implementation in a high-throughput clinical laboratory.


2021 ◽  
Author(s):  
Sien Ombelet ◽  
Liselotte Hardy ◽  
Jan Jacobs

Use of equipment-free, “manual” blood cultures is still widespread in low-resource settings, as requirements for implementation of automated systems are often not met. Quality of manual blood culture bottles currently on the market, however, is usually unknown. An acceptable quality in terms of yield and speed of growth can be ensured by evaluating the bottles using simulated blood cultures. In these experiments, bottles from different systems are inoculated in parallel with blood and a known quantity of bacteria. Based on literature review and personal experiences, we propose a short and practical protocol for an efficient evaluation of manual blood culture bottles, aimed at research or reference laboratories in low-resource settings. This laboratory protocol was used in a study for Médecins Sans Frontières' Mini-Lab project, which aims to bring clinical bacteriology to low-resource settings. Three bottle types were evaluated in this study; two "manual" blood culture bottles and one automated system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vasanth Jayaraman ◽  
Karthik Krishna ◽  
Yuanyuan Yang ◽  
Karenah J. Rajasekaran ◽  
Yuzheng Ou ◽  
...  

Abstract Current serological immunoassays have inherent limitations for certain infectious diseases such as Lyme disease, a bacterial infection caused by Borrelia burgdorferi in North America. Here we report a novel method of manufacturing high-density multiplexed protein microarrays with the capacity to detect low levels of antibodies accurately from small blood volumes in a fully automated system. A panel of multiple serological markers for Lyme disease are measured using a protein microarray system, Lyme Immunochip, in a single step but interpreted adhering to the standard two-tiered testing algorithm (enzyme immunoassay followed by Western blot). Furthermore, an enhanced IgM assay was supplemented to improve the test’s detection sensitivity for early Lyme disease. With a training cohort (n = 40) and a blinded validation cohort (n = 90) acquired from CDC, the Lyme Immunochip identified a higher proportion of Lyme disease patients than the two-tiered testing (82.4% vs 70.6% in the training set, 66.7% vs 60.0% in the validation set, respectively). Additionally, the Immunochip improved sensitivity to 100% while having a lower specificity of 95.2% using a set of investigational antigens which are being further evaluated with a large cohort of blinded samples from the CDC and Columbia University. This universal microarray platform provides an unprecedented opportunity to resolve a broad range of issues with diagnostic tests, including multiplexing, workflow simplicity, and reduced turnaround time and cost.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Serio Angelo Maria Agriesti ◽  
Marco Ponti ◽  
Giovanna Marchionni ◽  
Paolo Gandini

Abstract Introduction In the near future, automated vehicles will drive on public roads together with traditional vehicles. Even though almost the whole academia agrees on that statement, the possible interferences between the two different kinds of driver are still to be analyzed and the real impacts on the traffic flow to be under-stood. Objectives Aim of this paper is to study one of the most likely L3 automated system to be deployed on public roads in the short term: Highway Chauffeur. The analysis of this system is carried out on a roadwork scenario to assess the positive impacts arising from a joint implementation of the automated system and the C-ITS Use Case signaling the closure of a lane. In fact, the main contribution of this paper is the assessment of the possible benefits in travel times and driving regime arising from the joint implementation of the Highway Chauffeur system and of C-ITS messages, both for the vehicles equipped with both technologies and for the surrounding traffic. Methods The assessment is achieved through traffic simulations carried out with the VISSIM software and a Python script developed by the authors. The overall process is described and the obtained results are provided, commented and compared to define the implementation of the C-ITS Use Case that could maximize the benefits of L3 driving. Results These results showed how triggering the take-over maneuver in ad-vance fosters the bottleneck efficiency (the same speed values reached between 80 and 100% Market Penetration for around 700 m range of the C-ITS message are reached at 50% Market Penetration with a 1500 m range). Besides, an in-creased speed up to 30 km/h at the bottleneck is recorded, depending on the mar-ket penetration and the message range. Finally, the delay upstream the roadworks entrance is reduced by 6% and arises at around 700 m, without the need to deploy the message up to 1500 m. Conclusions The paper investigates the impacts of take-over maneuvers and of automated driving while considering different operational parameters such as the message range. The results suggest all the potentialities of the Use Case while providing interesting figures that frame the trends related to the different imple-mentations. Finally, the tool developed to carry out the presented analysis is re-ported and made available so that hopefully the Use Case may be explored further and a precise impact assessment may be carried out with different prototypes of AVs and on different infrastructures.


2021 ◽  
Author(s):  
Anders Faarbæk Mikkelstrup ◽  
Morten Kristiansen ◽  
Ewa Kristiansen

Abstract High-frequency mechanical impact (HFMI) treatment is a well-documented post-weld treatment to improve the fatigue life of welds. Treatment of the weld toe must be performed by a skilled operator due to the curved and inconsistent nature of the weld toe to ensure an acceptable quality. However, the process is characterised by noise and vibrations; hence, manual treatment should be avoided for extended periods of time. This work proposes an automated system for applying robotised 3D scanning to perform post-weld treatment and quality inspection of linear welds. A 3D scan of the weld is applied to locally determine the gradient and curvature across the weld surface to locate the weld toe. Based on the weld toe position, an adaptive robotic treatment trajectory is generated that accurately follows the curvature of the weld toe and adapts tool orientation to the weld profile. The 3D scan is reiterated after the treatment, and the surface gradient and curvature are further applied to extract the quantitative measures of the treatment, such as groove radius, weld toe deviation, and indentation depth and width. The adaptive robotic treatment is compared experimentally to manual and linear robotic treatment. This is done by treating 600 mm weld toe of each treatment type and evaluating the quantitative measures using the developed system. The results showed that the developed system reduced the overall treatment variance by respectively 26.6 % and 31.9 %. Additionally, a mean weld toe deviation of 0.09 mm was achieved; thus, improving process stability yet minimising human involvement.


2021 ◽  
Vol 21 (2) ◽  
pp. 619-627
Author(s):  
Gebremedhin Berhe Gebregergs ◽  
Mulusew Alemneh Sinishaw ◽  
Melashu Balew Shiferaw ◽  
Tenagnework Antife ◽  
Melkie Assefa ◽  
...  

Background: In Ethiopia, specimens of presumptive drug resistant tuberculosis cases are transported by courier system from district sample collection centers to reference laboratories. It is essential to track the effectiveness of the referral system and identify challenges in order to take timely and appropriate actions. We assessed turnaround time and quality of speci- mens, and explored challenges of the specimen referral system in Amhara region, Ethiopia, 2017. Methods: With mixed methods, we retrospectively examined 385 randomly selected presumptive drug resistance TB speci- mens, and interviewed 53 purposively selected key informants from laboratories and post offices. We calculated median TAT and proportion of acceptable quality. We analyzed qualitative data thematically. Results: Of the 385 specimens, 94.5% (364/385) had acceptable quality at arrival in the reference laboratories. All the 364 specimens had result. Three - fourth (76.1%) of results were dispatched to the referring health facilities within the recom- mended turnaround time. Ineffective communication and lack of feedback among institutions were mentioned as challenges. Conclusion: The postal service was effective in keeping quality and majority of test results were timely delivered. Yet, there were operational challenges. Therefore, effective communication, using dedicated vehicle for specimen shipment and aware- ness creation on specimen collection and handling are recommended. Keywords: Postal service; specimen referral; turnaround time; drug resistance tuberculosis.


2014 ◽  
Vol 63 (12) ◽  
pp. 1590-1594 ◽  
Author(s):  
Briony Hazelton ◽  
Lee C. Thomas ◽  
Thomas Olma ◽  
Jen Kok ◽  
Matthew O’Sullivan ◽  
...  

Antibiotic susceptibility testing with the BD Phoenix system on bacterial cell pellets generated from blood culture broths using the Bruker MALDI Sepsityper kit was evaluated. Seventy-six Gram-negative isolates, including 12 with defined multi-resistant phenotypes, had antibiotic susceptibility testing (AST) performed by Phoenix on the cell pellet in parallel with conventional methods. In total, 1414/1444 (97.9 %) of susceptibility tests were concordant, with only 1 (0.07 %) very major error. This novel method has the potential to reduce the turnaround time for AST results by up to a day for Gram-negative bacteraemias.


2014 ◽  
Vol 53 (2) ◽  
pp. 498-503 ◽  
Author(s):  
Marie Gauthier ◽  
Floriane Bidault ◽  
Amandine Mosnier ◽  
Nino Bablishvili ◽  
Nestani Tukvadze ◽  
...  

The emergence of drug-resistant forms of tuberculosis (TB) represents a major public health concern. Understanding the transmission routes of the disease is a key factor for its control and for the implementation of efficient interventions. Mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) marker typing is a well-described method for lineage identification and transmission tracking. However, the conventional manual genotyping technique is cumbersome and time-consuming and entails many risks for errors, thus hindering its implementation and dissemination. We describe here a new approach using the QIAxcel system, an automated high-throughput capillary electrophoresis system that also carries out allele calling. This automated method was assessed on 1,824 amplicons from 82 TB isolates and tested with sets of markers of 15 or 24 loci. Overall allele-calling concordance between the methods from 140 to 1,317 bp was 98.9%. DNA concentrations and repeatability and reproducibility performances showed no biases in allele calling. Furthermore, turnaround time using this automated system was reduced by 81% compared to the conventional manual agarose gel method. In sum, this new automated method facilitates MIRU-VNTR genotyping and provides reliable results. Therefore, it is well suited for field genotyping. The implementation of this method will help to achieve accurate and cost-effective epidemiological studies, especially in countries with a high prevalence of TB, where the high number of strains complicates the surveillance of circulating lineages and requires efficient interventions to be carried out in an urgent manner.


2021 ◽  
Vol 9 (11) ◽  
Author(s):  
Paul Speaker ◽  
Regina Wells

The growing queue for DNA analysis in crime laboratories has prevented the analysis from providing investigative leads as turnaround time has grown, limiting the analytical results to a confirmatory role in the courtroom. Rapid DNA technology offers an opportunity to employ an automated system for the development of a DNA profile. The Rapid DNA technology permits a police booking station to take a buccal swab obtained from an arrestee, acquire a DNA profile, and test that profile against a DNA database, all while the arrestee remains in police custody during the booking process. Rapid DNA technologies are a capital-intensive system enabling sophisticated equipment designed for operation by individuals with limited technical training to provide investigative leads with immediate support. We present the testing of rapid DNA technology in a trial program conducted by the Kentucky State Police Forensic Laboratory. The Kentucky test confirms the efficacy of the rapid DNA testing as consistent with the findings from traditional laboratory testing. The economic analysis related to testing indicates that the time saving from the rapid DNA analysis yields benefits that far outweigh the costs from the change in technology.


Sign in / Sign up

Export Citation Format

Share Document