scholarly journals Detecting axonal injury in individual patients after traumatic brain injury

Brain ◽  
2020 ◽  
Author(s):  
Amy E Jolly ◽  
Maria Bălăeţ ◽  
Adriana Azor ◽  
Daniel Friedland ◽  
Stefano Sandrone ◽  
...  

Abstract Poor outcomes after traumatic brain injury (TBI) are common yet remain difficult to predict. Diffuse axonal injury is important for outcomes, but its assessment remains limited in the clinical setting. Currently, axonal injury is diagnosed based on clinical presentation, visible damage to the white matter or via surrogate markers of axonal injury such as microbleeds. These do not accurately quantify axonal injury leading to misdiagnosis in a proportion of patients. Diffusion tensor imaging provides a quantitative measure of axonal injury in vivo, with fractional anisotropy often used as a proxy for white matter damage. Diffusion imaging has been widely used in TBI but is not routinely applied clinically. This is in part because robust analysis methods to diagnose axonal injury at the individual level have not yet been developed. Here, we present a pipeline for diffusion imaging analysis designed to accurately assess the presence of axonal injury in large white matter tracts in individuals. Average fractional anisotropy is calculated from tracts selected on the basis of high test-retest reliability, good anatomical coverage and their association to cognitive and clinical impairments after TBI. We test our pipeline for common methodological issues such as the impact of varying control sample sizes, focal lesions and age-related changes to demonstrate high specificity, sensitivity and test-retest reliability. We assess 92 patients with moderate-severe TBI in the chronic phase (≥6 months post-injury), 25 patients in the subacute phase (10 days to 6 weeks post-injury) with 6-month follow-up and a large control cohort (n = 103). Evidence of axonal injury is identified in 52% of chronic and 28% of subacute patients. Those classified with axonal injury had significantly poorer cognitive and functional outcomes than those without, a difference not seen for focal lesions or microbleeds. Almost a third of patients with unremarkable standard MRIs had evidence of axonal injury, whilst 40% of patients with visible microbleeds had no diffusion evidence of axonal injury. More diffusion abnormality was seen with greater time since injury, across individuals at various chronic injury times and within individuals between subacute and 6-month scans. We provide evidence that this pipeline can be used to diagnose axonal injury in individual patients at subacute and chronic time points, and that diffusion MRI provides a sensitive and complementary measure when compared to susceptibility weighted imaging, which measures diffuse vascular injury. Guidelines for the implementation of this pipeline in a clinical setting are discussed.

2016 ◽  
Vol 22 (2) ◽  
pp. 120-137 ◽  
Author(s):  
Jasmeet P. Hayes ◽  
Erin D. Bigler ◽  
Mieke Verfaellie

AbstractObjectives:Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition.Methods:We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury.Results:The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes.Conclusions:TBI has a negative impact on distributed brain networks that lead to behavioral disturbance. (JINS, 2016,22, 120–137)


2019 ◽  
Vol 13 ◽  
pp. 117906951985862 ◽  
Author(s):  
Wouter S Hoogenboom ◽  
Todd G Rubin ◽  
Kenny Ye ◽  
Min-Hui Cui ◽  
Kelsey C Branch ◽  
...  

Mild traumatic brain injury (mTBI), also known as concussion, is a serious public health challenge. Although most patients recover, a substantial minority suffers chronic disability. The mechanisms underlying mTBI-related detrimental effects remain poorly understood. Although animal models contribute valuable preclinical information and improve our understanding of the underlying mechanisms following mTBI, only few studies have used diffusion tensor imaging (DTI) to study the evolution of axonal injury following mTBI in rodents. It is known that DTI shows changes after human concussion and the role of delineating imaging findings in animals is therefore to facilitate understanding of related mechanisms. In this work, we used a rodent model of mTBI to investigate longitudinal indices of axonal injury. We present the results of 45 animals that received magnetic resonance imaging (MRI) at multiple time points over a 2-week period following concussive or sham injury yielding 109 serial observations. Overall, the evolution of DTI metrics following concussive or sham injury differed by group. Diffusion tensor imaging changes within the white matter were most noticeable 1 week following injury and returned to baseline values after 2 weeks. More specifically, we observed increased fractional anisotropy in combination with decreased radial diffusivity and mean diffusivity, in the absence of changes in axial diffusivity, within the white matter of the genu corpus callosum at 1 week post-injury. Our study shows that DTI can detect microstructural white matter changes in the absence of gross abnormalities as indicated by visual screening of anatomical MRI and hematoxylin and eosin (H&E)-stained sections in a clinically relevant animal model of mTBI. Whereas additional histopathologic characterization is required to better understand the neurobiological correlates of DTI measures, our findings highlight the evolving nature of the brain’s response to injury following concussion.


2018 ◽  
Vol 89 (10) ◽  
pp. A42.1-A42
Author(s):  
Graham Neil SN ◽  
Jolly Amy E ◽  
Bourke Niall J ◽  
Scott Gregory ◽  
Cole James H ◽  
...  

BackgroundDementia rates are elevated after traumatic brain injury (TBI) and a subgroup develops chronic traumatic encephalopathy. Post-traumatic neurodegeneration can be measured by brain atrophy rates derived from neuroimaging, but it is unclear how atrophy relates to the initial pattern of injury.ObjectivesTo investigate the relationship between baseline TBI patterns and subsequent neurodegeneration measured by progressive brain atrophy.Methods55 patients after moderate-severe TBI (mean 3 years post-injury) and 20 controls underwent longitudinal MRI. Brain atrophy was quantified using the Jacobian determinant defined from volumetric T1 scans approximately one year apart. Diffuse axonal injury was measured using diffusion tensor imaging and focal injuries defined from T1 and FLAIR. Neuropsychological assessment was performed.ResultsAbnormal progressive brain atrophy was seen after TBI (~1.8%/year in white matter). This was accompanied by widespread reductions in fractional anisotropy, in keeping with the presence of diffuse axonal injury. There was a strong negative correlation between FA and brain atrophy, whereby areas of greater white matter damage showed greater atrophy over time.ConclusionsThe results show a strong relationship between the location of diffuse axonal injury and subsequent neurodegeneration. This suggests that TBI triggers progressive neurodegeneration through the long-lasting effects of diffuse axonal injury.


Brain ◽  
2020 ◽  
Author(s):  
Neil S N Graham ◽  
Amy Jolly ◽  
Karl Zimmerman ◽  
Niall J Bourke ◽  
Gregory Scott ◽  
...  

Abstract Traumatic brain injury is associated with elevated rates of neurodegenerative diseases such as Alzheimer’s disease and chronic traumatic encephalopathy. In experimental models, diffuse axonal injury triggers post-traumatic neurodegeneration, with axonal damage leading to Wallerian degeneration and toxic proteinopathies of amyloid and hyperphosphorylated tau. However, in humans the link between diffuse axonal injury and subsequent neurodegeneration has yet to be established. Here we test the hypothesis that the severity and location of diffuse axonal injury predicts the degree of progressive post-traumatic neurodegeneration. We investigated longitudinal changes in 55 patients in the chronic phase after moderate–severe traumatic brain injury and 19 healthy control subjects. Fractional anisotropy was calculated from diffusion tensor imaging as a measure of diffuse axonal injury. Jacobian determinant atrophy rates were calculated from serial volumetric T1 scans as a measure of measure post-traumatic neurodegeneration. We explored a range of potential predictors of longitudinal post-traumatic neurodegeneration and compared the variance in brain atrophy that they explained. Patients showed widespread evidence of diffuse axonal injury, with reductions of fractional anisotropy at baseline and follow-up in large parts of the white matter. No significant changes in fractional anisotropy over time were observed. In contrast, abnormally high rates of brain atrophy were seen in both the grey and white matter. The location and extent of diffuse axonal injury predicted the degree of brain atrophy: fractional anisotropy predicted progressive atrophy in both whole-brain and voxelwise analyses. The strongest relationships were seen in central white matter tracts, including the body of the corpus callosum, which are most commonly affected by diffuse axonal injury. Diffuse axonal injury predicted substantially more variability in white matter atrophy than other putative clinical or imaging measures, including baseline brain volume, age, clinical measures of injury severity and microbleeds (>50% for fractional anisotropy versus <5% for other measures). Grey matter atrophy was not predicted by diffuse axonal injury at baseline. In summary, diffusion MRI measures of diffuse axonal injury are a strong predictor of post-traumatic neurodegeneration. This supports a causal link between axonal injury and the progressive neurodegeneration that is commonly seen after moderate/severe traumatic brain injury but has been of uncertain aetiology. The assessment of diffuse axonal injury with diffusion MRI is likely to improve prognostic accuracy and help identify those at greatest neurodegenerative risk for inclusion in clinical treatment trials.


2012 ◽  
Vol 18 (6) ◽  
pp. 1006-1018 ◽  
Author(s):  
Kimberly D.M. Farbota ◽  
Aparna Sodhi ◽  
Barbara B. Bendlin ◽  
Donald G. McLaren ◽  
Guofan Xu ◽  
...  

AbstractAfter traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements. (JINS, 2012,18, 1–13)


2021 ◽  
Author(s):  
Paulo Branco ◽  
Noam Bosak ◽  
Jannis Bielefeld ◽  
Olivia Cong ◽  
Yelena Granovsky ◽  
...  

Mild traumatic brain injury, mTBI, is a leading cause of disability worldwide, with acute pain manifesting as one of its most debilitating symptoms. Understanding acute post-injury pain is important since it is a strong predictor of long-term outcomes. In this study, we imaged the brains of 172 patients with mTBI, following a motorized vehicle collision and used a machine learning approach to extract white matter structural and resting state fMRI functional connectivity measures to predict acute pain. Stronger white matter tracts within the sensorimotor, thalamic-cortical, and default-mode systems predicted 20% of the variance in pain severity within 72 hours of the injury. This result generalized in two independent groups: 39 mTBI patients and 13 mTBI patients without whiplash symptoms. White matter measures collected at 6-months after the collision still predicted mTBI pain at that timepoint (n = 36). These white-matter connections were associated with two nociceptive psychophysical outcomes tested at a remote body site – namely conditioned pain modulation and magnitude of suprathreshold pain–, and with pain sensitivity questionnaire scores. Our validated findings demonstrate a stable white-matter network, the properties of which determine a significant amount of pain experienced after acute injury, pinpointing a circuitry engaged in the transformation and amplification of nociceptive inputs to pain perception.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012222
Author(s):  
Emily L Dennis ◽  
Karen Caeyenberghs ◽  
Kristen R Hoskinson ◽  
Tricia L Merkley ◽  
Stacy J Suskauer ◽  
...  

Objective:Our study addressed aims: (1) test the hypothesis that moderate-severe TBI in pediatric patients is associated with widespread white matter (WM) disruption; (2) test the hypothesis that age and sex impact WM organization after injury; and (3) examine associations between WM organization and neurobehavioral outcomes.Methods:Data from ten previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric msTBI working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline.Results:Five hundred and seven children and adolescents (244 with complicated mild to severe TBI [msTBI] and 263 controls) were included. Patients were clustered into three post-injury intervals: acute/subacute - <2 months, post-acute - 2-6 months, chronic - 6+ months. Outcomes were dMRI metrics and post-injury behavioral problems as indexed by the Child Behavior Checklist (CBCL). Our analyses revealed altered WM diffusion metrics across multiple tracts and all post-injury intervals (effect sizes ranging between d=-0.5 to -1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time post-injury. We observed a sex-by-group interaction: females with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (𝞫=0.043), which coincided with more parent-reported behavioral problems (𝞫=-0.0027).Conclusions:WM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically-meaningful patient subtypes.


2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Cheuk Tang ◽  
Emily Eaves ◽  
Kristen Dams-O’Connor ◽  
Lap Ho ◽  
Eric Leung ◽  
...  

AbstractDiffuse axonal injury is a common pathological consequence of Traumatic Brain Injury (TBI). Diffusion Tensor Imaging is an ideal technique to study white matter integrity using the Fractional Anisotropy (FA) index which is a measure of axonal integrity and coherence. There have been several reports showing reduced FA in individuals with TBI, which suggest demyelination or reduced fiber density in white matter tracts secondary to injury. Individuals with TBI are usually diagnosed with cognitive deficits such as reduced attention span, memory and executive function. In this study we sought to investigate correlations between brain functional networks, white matter integrity, and TBI severity in individuals with TBI ranging from mild to severe. A resting state functional magnetic resonance imaging protocol was used to study the default mode network in subjects at rest. FA values were decreased throughout all white matter tracts in the mild to severe TBI subjects. FA values were also negatively correlated with TBI injury severity ratings. The default mode network showed several brain regions in which connectivity measures were higher among individuals with TBI relative to control subjects. These findings suggest that, subsequent to TBI, the brain may undergo adaptation responses at the cellular level to compensate for functional impairment due to axonal injury.


2018 ◽  
Author(s):  
Hadijat M. Makinde ◽  
Talia B. Just ◽  
Carla M. Cuda ◽  
Nicola Bertolino ◽  
Daniele Procissi ◽  
...  

AbstractMonocytes are amongst the first cells recruited into the brain after traumatic brain injury (TBI). We have shown monocyte depletion 24 hours prior to TBI reduces brain edema, decreases neutrophil infiltration and improves behavioral outcomes. Additionally, both lesion and ventricle size correlate with poor neurologic outcome after TBI. Therefore, we aimed to determine the association between monocyte infiltration, lesion size, and ventricle volume. We hypothesized that monocyte depletion would attenuate lesion size, decrease ventricle enlargement, and preserve white matter in mice after TBI. C57BL/6 mice underwent pan monocyte depletion via intravenous injection of liposome-encapsulated clodronate. Control mice were injected with liposome-encapsulated PBS. TBI was induced via an open-head, controlled cortical impact. Mice were imaged using magnetic resonance imaging (MRI) at 1, 7, and 14 days post-injury to evaluate progression of lesion and to detect morphological changes associated with injury (3D T1- weighted MRI) including regional alterations in white matter patterns (multi-direction diffusion MRI). Lesion size and ventricle volume were measured using semi-automatic segmentation and active contour methods with the software program ITK-SNAP. Data was analyzed with the statistical software program PRISM. No significant effect of monocyte depletion on lesion size was detected using MRI following TBI (p=0.4). However, progressive ventricle enlargement following TBI was observed to be attenuated in the monocyte-depleted cohort (5.3 ± 0.9mm3) as compared to the sham-depleted cohort (13.2 ± 3.1mm3; p=0.02). Global white matter integrity and regional patterns were evaluated and quantified for each mouse after extracting fractional anisotropy maps from the multi-direction diffusion-MRI data using Siemens Syngo DTI analysis package. Fractional anisotropy values were preserved in the monocyte-depleted cohort (123.0 ± 4.4mm3) as compared to sham-depleted mice (94.9 ± 4.6mm3; p=0.025) by 14 days post-TBI. The MRI derived data suggests that monocyte depletion at the time of injury may be a novel therapeutic strategy in the treatment of TBI. Furthermore, non-invasive longitudinal imaging allows for the evaluation of both TBI progression as well as therapeutic response over the course of injury.


Sign in / Sign up

Export Citation Format

Share Document