15 Stimulating the brain with sound: focused ultrasound for neuromodulation

2020 ◽  
Vol 91 (8) ◽  
pp. e6.2-e6
Author(s):  
Chris Butler

Chris Butler studied medicine at Gonville and Caius College, Cambridge (1991–1994) and then at the University of Edinburgh (1994–1997). He conducted his PhD on the syndrome of transient epileptic amnesia under the supervision of Professor Adam Zeman. He worked as a post-doctoral fellow at the Memory and Aging Center, University of California at San Francisco and moved to Oxford in 2009. He was awarded a Clinician Scientist fellowship from the Medical Research Council in 2013.Transcranial ultrasound stimulation (TUS) is emerging as a potentially powerful, non-invasive technique for focal brain stimulation. TUS uses low intensity focused ultrasound delivered through the skull to cause direct modulation of neuronal function. In animal studies, TUS has been shown to modulate activity in several brain areas, including sensorimotor regions, visual cortex, frontal eye fields, anterior cingulate cortex and thalamic targets, resulting in behavioural as well as electrophysiological changes. Several studies have shown that TUS can be applied safely to healthy human participants to modulate behaviour and neural activity in brain regions including somatosensory, visual, and motor cortex as well as to deeper thalamic nuclei. These data have resulted in TUS emerging as a safe, potent, non-invasive brain stimulation tool, with better spatial accuracy and greater depth than established techniques such as transcranial magnetic or electrical stimulation. I will review these studies and discuss recent work of our own in which we studied, for the first time, TUS effects on higher-order human cortex.We investigated whether TUS can modulate higher-order visual processing both in superficial (middle temporal area (MT)) and deep (fusiform face area (FFA)) regions. Magnetic resonance imaging was used to map skull anatomy and functional regions of interest (MT and FFA) for each participant (n=16). To control for non-specific effects, auditory masking was applied during the tasks. EEG data were collected throughout. Auditory masking reduced subjective stimulation detection to chance level and abolished auditory evoked potentials. Ultrasonic stimulation of MT led to facilitation of visual motion detection in the contralateral hemifield, with no effect upon face identity detection. Stimulation of FFA did not affect visual motion detection performance. We show that TUS can be used in humans to modify behaviour and electrophysiological activity in higher-order visual pathways in a task- specific and anatomically precise manner.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Martha M. Shiell ◽  
François Champoux ◽  
Robert J. Zatorre

After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl’s gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area’s involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.


2010 ◽  
Vol 6 (6) ◽  
pp. 572-572 ◽  
Author(s):  
M. Harasawa ◽  
A. Obata ◽  
T. Morita ◽  
T. Ito ◽  
T. Saito ◽  
...  

1979 ◽  
Vol 56 (1) ◽  
pp. 77-81 ◽  
Author(s):  
B. Scherer ◽  
P. C. Weber

1. To evaluate in man by a non-invasive technique the possible role of prostaglandin (PG) compounds in initial renal haemodynamic effects after frusemide we studied the urinary excretion of PGE2 and of PGF2α before and at 15 min and 120 min after intravenous injection of this drug. 2. An increase of PGE2 and of PGF2α excretion was found in all 19 volunteer subjects within 15 min after frusemide, and PG excretion had returned towards control values at 120 min. The stimulation of PGF2α excretion by frusemide was markedly lower in men than in women, but this difference was statistically not significant. 3. No clear-cut relation was found between urinary PG compounds, on the one hand, and urinary volume, urinary sodium and urinary potassium, on the other hand, during the study. 4. The results support the assumption that the rapid increase of urinary PG compounds after frusemide, which parallels the changes in renal haemodynamics, may be an indicator of an activation of the PG system, in part or predominantly, in the vascular compartment.


Author(s):  
Christine Park ◽  
Mengyue Chen ◽  
Taewon Kim

Low-intensity transcranial focused ultrasound (LI-tFUS) stimulation is a non-invasive neuromodulation tool that demonstrates high target localization accuracy and depth penetration. It has been shown to modulate activities in the primary motor and somatosensory cortex. Previous studies in animals and humans acknowledged the possibility of indirect stimulation of the peripheral auditory pathway that could confound the somatosensory and motor responses observed with LI-tFUS stimulation. Here, we discuss the implications and interpretations of auditory confounding in the context of neuromodulation.


Author(s):  
Tegan Penton ◽  
Caroline Catmur ◽  
Michael J Banissy ◽  
Geoffrey Bird ◽  
Vincent Walsh

Abstract Use of non-invasive brain stimulation methods (NIBS) has become a common approach to study social processing in addition to behavioural, imaging and lesion studies. However, research using NIBS to investigate social processing faces challenges. Overcoming these is important to allow valid and reliable interpretation of findings in neurotypical cohorts, but also to allow us to tailor NIBS protocols to atypical groups with social difficulties. In this review, we consider the utility of brain stimulation as a technique to study and modulate social processing. We also discuss challenges that face researchers using NIBS to study social processing in neurotypical adults with a view to highlighting potential solutions. Finally, we discuss additional challenges that face researchers using NIBS to study and modulate social processing in atypical groups. These are important to consider given that NIBS protocols are rarely tailored to atypical groups before use. Instead, many rely on protocols designed for neurotypical adults despite differences in brain function that are likely to impact response to NIBS.


Sign in / Sign up

Export Citation Format

Share Document