scholarly journals Spastic paresis: impaired spinal reflexes and intact motor programs.

1988 ◽  
Vol 51 (4) ◽  
pp. 568-571 ◽  
Author(s):  
W Berger ◽  
G A Horstmann ◽  
V Dietz
2015 ◽  
Vol 43 (01) ◽  
pp. 44-38
Author(s):  
C.-C. Lin ◽  
K.-S. Chen ◽  
Y.-L. Lin ◽  
J. P.-W. Chan

SummaryA 5-month-old, 13.5 kg, female Corriedale sheep was referred to the Veterinary Medicine Teaching Hospital, with a history of traumatic injury of the cervical spine followed by non-ambulatoric tetraparesis that occurred 2 weeks before being admitted to the hospital. At admission, malalignment of the cervical spine with the cranial part of the neck deviating to the right was noted. Neurological examinations identified the absence of postural reactions in both forelimbs, mildly decreased spinal reflexes, and normal reaction to pain perception tests. Radiography revealed malalignment of the cervical vertebrae with subluxations at C1–C2 and C2–C3, and a comminuted fracture of the caudal aspect of C2. The sheep was euthanized due to a presumed poor prognosis. Necropsy and histopathological findings confirmed injuries of the cervical spine from C1 to C3, which were consistent with the clinical finding of tetraparesis in this case. This paper presents a rare case of multiple subluxations of the cervical spine caused by blunt force trauma in a young sheep. These results highlight the importance of an astute clinical diagnosis for such an acute cervical spine trauma and the need for prompt surgical correction for similar cases in the future.


2002 ◽  
Vol 87 (4) ◽  
pp. 1763-1771 ◽  
Author(s):  
Antoni Valero-Cabré ◽  
Xavier Navarro

We investigated the changes induced in crossed extensor reflex responses after peripheral nerve injury and repair in the rat. Adults rats were submitted to non repaired sciatic nerve crush (CRH, n = 9), section repaired by either aligned epineurial suture (CS, n = 11) or silicone tube (SIL4, n = 13), and 8 mm resection repaired by tubulization (SIL8, n = 12). To assess reinnervation, the sciatic nerve was stimulated proximal to the injury site, and the evoked compound muscle action potential (M and H waves) from tibialis anterior and plantar muscles and nerve action potential (CNAP) from the tibial nerve and the 4th digital nerve were recorded at monthly intervals for 3 mo postoperation. Nociceptive reinnervation to the hindpaw was also assessed by plantar algesimetry. Crossed extensor reflexes were evoked by stimulation of the tibial nerve at the ankle and recorded from the contralateral tibialis anterior muscle. Reinnervation of the hindpaw increased progressively with time during the 3 mo after lesion. The degree of muscle and sensory target reinnervation was dependent on the severity of the injury and the nerve gap created. The crossed extensor reflex consisted of three bursts of activity (C1, C2, and C3) of gradually longer latency, lower amplitude, and higher threshold in control rats. During follow-up after sciatic nerve injury, all animals in the operated groups showed recovery of components C1 and C2 and of the reflex H wave, whereas component C3 was detected in a significantly lower proportion of animals in groups with tube repair. The maximal amplitude of components C1 and C2 recovered to values higher than preoperative values, reaching final levels between 150 and 245% at the end of the follow-up in groups CRH, CS, and SIL4. When reflex amplitude was normalized by the CNAP amplitude of the regenerated tibial nerve, components C1 (300–400%) and C2 (150–350%) showed highly increased responses, while C3 was similar to baseline levels. In conclusion, reflexes mediated by myelinated sensory afferents showed, after nerve injuries, a higher degree of facilitation than those mediated by unmyelinated fibers. These changes tended to decline toward baseline values with progressive reinnervation but still remained significant 3 mo after injury.


Toxicon ◽  
2021 ◽  
Vol 190 ◽  
pp. S19
Author(s):  
Nigar Dursun ◽  
Tae Mo Chung ◽  
Carlo Colosimo ◽  
Roongroj Bhidayasiri ◽  
Kailash Bhatia ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Margarete Delazer ◽  
Laura Zamarian ◽  
Atbin Djamshidian

Background: Agraphia is a typical feature in the clinical course of Alzheimer’s disease (AD). Objective: Assess the differences between AD and normal aging as regards kinematographic features of handwriting and elucidate writing deficits in AD. Methods: The study included 23 patients with AD (78.09 years/SD = 7.12; MMSE 21.39/SD = 3.61) and 34 healthy controls (75.56 years/SD = 5.85; MMSE 29.06/SD = 0.78). Both groups performed alphabetical and non-alphabetical writing tasks. The kinematographic assessment included the average number of inversions per stroke (NIV; number of peaks in the velocity profile in a single up or down stroke), percentage of automated segments, frequency (average number of strokes per second), writing pressure, and writing velocity on paper. Results: A total of 14 patients showed overt writing difficulties reflected by omissions or substitutions of letters. AD patients showed less automated movements (as measured by NIV), lower writing velocity, and lower frequency of up-and-down strokes in non-alphabetical as well as in alphabetical writing. In the patient group, Spearman correlation analysis between overt writing performance and NIV was significant. That means patients who had less errors in writing a sentence showed a higher automaticity in handwriting. The correctness of alphabetical writing and some kinematographic measures in writing non-alphabetical material reached excellent diagnostic values in ROC analyses. There was no difference in the application of pressure on the pen between patients and controls. Conclusion: Writing disorders are multi-componential in AD and not strictly limited to one processing level. The slow and poorly automated execution of motor programs is not bound to alphabetical material.


1964 ◽  
Vol 207 (2) ◽  
pp. 303-307 ◽  
Author(s):  
B. J. Prout ◽  
J. H. Coote ◽  
C. B. B. Downman

In cats anesthetized with chloralose-urethane mixture, stimulation of an afferent nerve evoked a vasoconstrictor reflex (VCR) and a galvanic skin response (GSR) in the pads of the feet. Stimulation of the ventromedial medullary reticular substance at the level of the obex abolished the VCR and the GSR. VCR could also be reduced by occlusion during prolonged stimulation of another spinal or visceral afferent pathway. Medulla stimulation was effective without itself causing a sympathetic discharge to the paw, showing that inhibition rather than occlusion was operative. Anterior cerebellar stimulation also inhibited the VCR. Carotid sinus nerve stimulation did not abolish the VCR. It is concluded that the effective mechanism includes a bulbospinal inhibitory path projecting on a spinal vasoconstrictor reflex arc. This arrangement is similar to the descending pathways inhibiting other spinal reflexes but the VCR-inhibitory path can be activated independently of them.


1966 ◽  
Vol 10 (1) ◽  
pp. 96-102 ◽  
Author(s):  
G. Deffenu ◽  
P. Mantegazzini
Keyword(s):  

2013 ◽  
Vol 109 (9) ◽  
pp. 2327-2334 ◽  
Author(s):  
Andrew M. Dacks ◽  
Klaudiusz R. Weiss

Neurotransmitters can have diverse effects that occur over multiple time scales often making the consequences of neurotransmission difficult to predict. To explore the consequences of this diversity, we used the buccal ganglion of Aplysia to examine the effects of GABA release by a single interneuron, B40, on the intrinsic properties and motor output of the radula closure neuron B8. B40 induces a picrotoxin-sensitive fast IPSP lasting milliseconds in B8 and a slow EPSP lasting seconds. We found that the excitatory effects of this slow EPSP are also mediated by GABA. Together, these two GABAergic actions structure B8 firing in a pattern characteristic of ingestive programs. Furthermore, we found that repeated B40 stimulation induces a persistent increase in B8 excitability that was occluded in the presence of the GABA B receptor agonist baclofen, suggesting that GABA affects B8 excitability over multiple time scales. The phasing of B8 activity during the feeding motor programs determines the nature of the behavior elicited during that motor program. The persistent increase in B8 excitability induced by B40 biased the activity of B8 during feeding motor programs causing the motor programs to become more ingestive in nature. Thus, a single transmitter released from a single interneuron can have consequences for motor output that are expressed over multiple time scales. Importantly, despite the differences in their signs and temporal characteristics, the three actions of B40 are coherent in that they promote B8 firing patterns that are characteristic of ingestive motor outputs.


Sign in / Sign up

Export Citation Format

Share Document