scholarly journals 88 Ixazomib, an oral proteasome inhibitor, depletes plasma cells reducing autoantibodies and pdcs in pre-clinical model of systemic lupus erythematosus

Author(s):  
Y Itomi ◽  
T Tanaka ◽  
M Sagara ◽  
T Kawamura ◽  
T Sato
2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1365.2-1365
Author(s):  
X. Fan ◽  
D. Guo ◽  
C. T. Ng ◽  
A. Law ◽  
Z. Y. Poon ◽  
...  

Background:Patients with systemic lupus erythematosus (SLE) suffer from severe morbidity and mortality1-4, either from the disease itself or from side effects of immunosuppression5. Discovery of novel effective therapies with less toxicity is an urgent need.Objectives:The aim of this study is to elucidate the therapeutic potential and working mechanism of cytokine CXCL5 in lupus mice.Methods:Treatment with CXCL5, bone marrow (BM)-MSCs, standard of care (SOC) with combination of methylprednisolone and cyclophosphamide was given to 16-week-old Faslprmice. Mice were monitored for 10 weeks. Splenic immune cell subsets were measured by flow cytometry. Circulating cytokine and immunoglobulin were detected by Luminex technology. Renal function was evaluated by urinary spot albumin creatinine ratio. In situ renal immune cell infiltration and complement 3 deposition were detected by Haematoxylin and Eosin (H&E) staining and immunohistochemistry.Results:CXCL5 demonstrated consistent and potent immunosuppressive capacity in suppressing SLE with reduced autoantibody secretion, lymphoproliferation and preserved kidney function. With further exploration, we proved that CXCL5 reduced the proliferation of helper T cells (TH1 and TH2) in thein vitrofunctional assay. When we administrated CXCL5 to lupus mice, it promoted the proliferation of regulatory T cells and reduced the proliferation of TH17 cells, macrophages and neutrophils. Multiple proinflammatory cytokines including IL-2, IL-6, IL-12, IL-17A, KC/CXCL1, MIP-1β/CCL4 and TNF-α were also reduced. When combined with SOC, CXCL5 boosted its therapeutic effect and reduced the relevant indices of disease activity. When we correlated the effect of four different treatment groups (CXCL5, BM-MSCs, SOC, and CXCL5 plus SOC) on mice survival and target cell changes, we found that TH17 cells were the key effector cells involved in the pathogenesis of SLE.Conclusion:These findings demonstrated that CXCL5 dampens inflammation in the pre-clinical model of systemic lupus erythematosus via the orchestral effect of regulating neutrophil trafficking and suppressing helper T cell-mediated immune response. Administrating exogenous CXCL5 might be an attractive option to treat patients with lupus.References:[1]Ji S, Guo Q, Han Y, Tan G, Luo Y, Zeng F. Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice.Cell Physiol Biochem.2012;29(5-6):705-712.[2]Peng SL. Altered T and B lymphocyte signaling pathways in lupus.Autoimmun Rev.2009;8(3):179-183.[3]Ferucci ED, Johnston JM, Gaddy JR, et al. Prevalence and incidence of systemic lupus erythematosus in a population-based registry of American Indian and Alaska Native people, 2007-2009.Arthritis Rheumatol.2014;66(9):2494-2502.[4]Jakes RW, Bae SC, Louthrenoo W, Mok CC, Navarra SV, Kwon N. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality.Arthritis Care Res (Hoboken).2012;64(2):159-168.[5]Sattwika PD, Mustafa R, Paramaiswari A, Herningtyas EH. Stem cells for lupus nephritis: a concise review of current knowledge.Lupus.2018;27(12):1881-1897.Acknowledgments:The work was supported by SMART II Centre Grant (NMRC/CG/M011/2017_SGH) and SingHealth Foundation (SHF/FG638P/2016).Disclosure of Interests:None declared


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 21.2-21
Author(s):  
S. R. Dillon ◽  
L. S. Evans ◽  
K. E. Lewis ◽  
J. Yang ◽  
M. W. Rixon ◽  
...  

Background:BAFF and APRIL are TNF superfamily members that form homo- and heteromultimers that bind TACI and BCMA on B cells; BAFF also binds BAFF-R. BAFF and APRIL support B cell development, differentiation, and survival, particularly for plasmablasts and plasma cells, and play critical roles in the pathogenesis of B cell-related autoimmune diseases. In nonclinical models, inhibition of either BAFF or APRIL alone mediates relatively modest effects, whereas their co-neutralization dramatically reduces B cell function, including antibody production. Fc fusions of wild-type (WT) TACI (e.g. atacicept and telitacicept) target both BAFF and APRIL and have demonstrated promising clinical potential in e.g. systemic lupus erythematosus (SLE) and IgA nephropathy but have not yet clearly exhibited long-term and/or complete disease remissions.Objectives:To generate a dual BAFF/APRIL antagonist with inhibitory activity superior to WT TACI and BCMA and with the potential to improve clinical outcomes in B cell-mediated diseases.Methods:Our directed evolution platform was used to identify a potent variant TNFR domain (vTD) of TACI that exhibits significantly enhanced affinity for BAFF and APRIL as compared to WT TACI; this TACI vTD domain was fused to a human IgG Fc to generate the therapeutic candidate ALPN-303. ALPN-303 was evaluated for functional activity in: 1) human lymphocyte assays, 2) the NOD.Aec1Aec2 spontaneous model of Sjogren’s syndrome (SjS), 3) the bm12-induced mouse model of lupus, 4) the (NZB/NZW)F1 spontaneous model of lupus, and 5) preclinical rodent and cynomolgus monkey pharmacokinetic/pharmacodynamic studies.Results:ALPN-303 inhibited BAFF- and APRIL-mediated signaling in vitro in human lymphocyte assays, with significantly lower IC50 values than WT TACI-Fc and belimumab comparators. In all mouse models evaluated, administration of ALPN-303 rapidly and significantly reduced key lymphocyte subsets including plasma cells, germinal center B cells, and follicular T helper cells. ALPN-303 significantly reduced autoantibodies and sialadenitis in the spontaneous SjS model, inhibited glomerular IgG deposition in the bm12-induced model of lupus, and potently suppressed anti-dsDNA autoAbs, blood urea nitrogen levels, proteinuria, sialadenitis, kidney lesions, and renal immune complex deposition in the NZB/W lupus model. As compared to WT TACI-Fc, ALPN-303 exhibited higher serum exposure and significantly and persistently decreased titers of serum IgM, IgG, and IgA antibodies in mice and cynomolgus monkeys (Figure 1).Figure 1.ALPN-303 induces more potent suppression, as compared to WT TACI-Fc, of serum immunoglobulins following a single 9 mg/kg IV infusion (on Day 0; arrows) in female cynomolgus monkeys.Conclusion:ALPN-303 is a potent BAFF/APRIL antagonist derived from our directed evolution platform that consistently demonstrates encouraging immunomodulatory activity and efficacy in vitro and in vivo, superior in preclinical studies to anti-BAFF antibody and WT TACI-Fc. This novel Fc fusion molecule demonstrates favorable preliminary developability characteristics, including higher serum exposures and more potent immunosuppressive activities, which may enable lower clinical doses and/or longer dosing intervals than WT TACI-Fc therapeutics. ALPN-303 may thus be an attractive development candidate for the treatment of multiple autoimmune and inflammatory diseases, particularly B cell-related diseases such as SLE, SjS, and other connective tissue diseases. Preclinical development is underway to enable the initiation of clinical trials later this year.Disclosure of Interests:Stacey R. Dillon Shareholder of: Alpine Immune Sciences, Bristol Myers Squibb, Employee of: Alpine Immune Sciences, Bristol Myers Squibb, Lawrence S. Evans Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Katherine E. Lewis Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Jing Yang Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Mark W. Rixon Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Joe Kuijper Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Dan Demonte Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Janhavi Bhandari Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Steve Levin Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Kayla Kleist Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Sherri Mudri Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Susan Bort Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Daniel Ardourel Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Michelle A. Seaberg Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Rachel Wang Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Chelsea Gudgeon Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Russell Sanderson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Martin F. Wolfson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Jan Hillson Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences, Stanford L. Peng Shareholder of: Alpine Immune Sciences, Employee of: Alpine Immune Sciences


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44362 ◽  
Author(s):  
Patricia L. Lugar ◽  
Cassandra Love ◽  
Amrie C. Grammer ◽  
Sandeep S. Dave ◽  
Peter E. Lipsky

RMD Open ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e001258
Author(s):  
Thomas Dörner ◽  
Franziska Szelinski ◽  
Andreia C Lino ◽  
Peter E Lipsky

Systemic lupus erythematosus (SLE) is characterised by numerous abnormalities in B lineage cells, including increased CD27++ plasmablasts/plasma cells, atypical CD27-IgD- B cells with increased CD95, spleen tyrosine kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic CD11c+Tbet+ age-associated B cells. Most findings, together with preclinical lupus models, support the concept of B cell hyperactivity in SLE. However, it remains largely unknown whether these specific B cell subsets have pathogenic consequences and whether they provide relevant therapeutic targets. Recent findings indicate a global distortion of B cell functional capability, in which the entire repertoire of naïve and memory B cells in SLE exhibits an anergic or postactivated (APA) functional phenotype. The APA status of SLE B cells has some similarities to the functional derangement of lupus T cells. APA B cells are characterised by reduced global cytokine production, diminished B cell receptor (BCR) signalling with decreased Syk and Bruton’s tyrosine kinase phosphorylation related to repeated in vivo BCR stimulation as well as hyporesponsiveness to toll-like receptor 9 engagement, but intact CD40 signalling. This APA status was related to constitutive co-localisation of CD22 linked to phosphatase SHP-1 and increased overall protein phosphatase activities. Notably, CD40 co-stimulation could revert this APA status and restore BCR signalling, downregulate protein tyrosine phosphatase transcription and promote B cell proliferation and differentiation. The APA status and their potential rescue by bystander help conveyed through CD40 stimulation not only provides insights into possible mechanisms of escape of autoreactive clones from negative selection but also into novel ways to target B cells therapeutically.


Sign in / Sign up

Export Citation Format

Share Document