On the Stability of Finite Difference Matrices

Author(s):  
K. W. Morton ◽  
S. Schechter
1991 ◽  
Vol 56 (1) ◽  
pp. 20-41 ◽  
Author(s):  
Dieter Britz ◽  
Merete F. Nielsen

In finite difference simulations of electrochemical transport problems, it is usually tacitly assumed that λ, the stability factor Dδt/δx2, should be set as high as possible. Here, accuracy contours are shown in (nT, λ) space, where nT is he number of finite difference steps per unit (dimensionless) time. Examples are the Cottrell experiment, simple chronopotentiometry and linear sweep voltammetry (LSV) on a reversible system. The simulation techniques examined include the standard explicit (point- and box-) methods as well as Runge-Kutta, Crank-Nicolson, hopscotch and Saul’yev. For the box method, the two-point current approximation appears to be the most appropriate. A rational algorithm for boundary concentrations with explicit LSV simulations is discussed. In general, the practice of choosing as high a λ value when using the explicit techniques, is confirmed; there are practical limits in all cases.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


Geophysics ◽  
2021 ◽  
pp. 1-76
Author(s):  
Chunli Zhang ◽  
Wei Zhang

The finite-difference method (FDM) is one of the most popular numerical methods to simulate seismic wave propagation in complex velocity models. If a uniform grid is applied in the FDM for heterogeneous models, the grid spacing is determined by the global minimum velocity to suppress dispersion and dissipation errors in the numerical scheme, resulting in spatial oversampling in higher-velocity zones. Then, the small grid spacing dictates a small time step due to the stability condition of explicit numerical schemes. The spatial oversampling and reduced time step will cause unnecessarily inefficient use of memory and computational resources in simulations for strongly heterogeneous media. To overcome this problem, we propose to use the adaptive mesh refinement (AMR) technique in the FDM to flexibly adjust the grid spacing following velocity variations. AMR is rarely utilized in acoustic wave simulations with the FDM due to the increased complexity of implementation, including its data management, grid generation and computational load balancing on high-performance computing platforms. We implement AMR for 2D acoustic wave simulation in strongly heterogeneous media based on the patch approach with the FDM. The AMR grid can be automatically generated for given velocity models. To simplify the implementation, we employ a well-developed AMR framework, AMReX, to carry out the complex grid management. Numerical tests demonstrate the stability, accuracy level and efficiency of the AMR scheme. The computation time is approximately proportional to the number of grid points, and the overhead due to the wavefield exchange and data structure is small.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bichun Dong ◽  
Runmei Zhang ◽  
Chuanyang Yu ◽  
Huan Li

Sound field prediction has practical significance in the control of noise generated by sources in a flow, for example, the noise in aero-engines and ventilation systems. Aiming at accurate and flexible prediction of time-dependent sound field, a finite-difference wavenumber-time domain method for sound field prediction in a uniformly moving medium is proposed. The method is based on the second-order convective wave equation, and the wavenumber-time domain representation of the sound pressure field on one plane is forward propagated via a derived recursive expression. In this paper, the recursive expression is first deduced, and then numerical stability and dispersion of the proposed method are analyzed, based on which the stability condition is given and the correction of dispersion related to the transition frequency is made. Numerical simulations are conducted to test the performance of the proposed method, and the results show that the method is valid and robust at different Mach numbers.


Author(s):  
B Sagar ◽  
S. Saha Ray

In this paper, a novel meshless numerical scheme to solve the time-fractional Oskolkov–Benjamin–Bona–Mahony–Burgers-type equation has been proposed. The proposed numerical scheme is based on finite difference and Kansa-radial basis function collocation approach. First, the finite difference scheme has been employed to discretize the time-fractional derivative and subsequently, the Kansa method is utilized to discretize the spatial derivatives. The stability and convergence analysis of the time-discretized numerical scheme are also elucidated in this paper. Moreover, the Kudryashov method has been utilized to acquire the soliton solutions for comparison with the numerical results. Finally, numerical simulations are performed to confirm the applicability and accuracy of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document