Well-Posed Solvability of Convex Optimization Problems on a Differentiable or Continuous Closed Convex Set

2020 ◽  
Vol 30 (1) ◽  
pp. 490-512
Author(s):  
Xi Yin Zheng
Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 220 ◽  
Author(s):  
Joran van Apeldoorn ◽  
András Gilyén ◽  
Sander Gribling ◽  
Ronald de Wolf

We study to what extent quantum algorithms can speed up solving convex optimization problems. Following the classical literature we assume access to a convex set via various oracles, and we examine the efficiency of reductions between the different oracles. In particular, we show how a separation oracle can be implemented using O~(1) quantum queries to a membership oracle, which is an exponential quantum speed-up over the Ω(n) membership queries that are needed classically. We show that a quantum computer can very efficiently compute an approximate subgradient of a convex Lipschitz function. Combining this with a simplification of recent classical work of Lee, Sidford, and Vempala gives our efficient separation oracle. This in turn implies, via a known algorithm, that O~(n) quantum queries to a membership oracle suffice to implement an optimization oracle (the best known classical upper bound on the number of membership queries is quadratic). We also prove several lower bounds: Ω(n) quantum separation (or membership) queries are needed for optimization if the algorithm knows an interior point of the convex set, and Ω(n) quantum separation queries are needed if it does not.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Darina Dvinskikh ◽  
Alexander Gasnikov

Abstract We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles, the proposed methods are optimal in terms of the number of communication steps. However, for all classes of the objective, the optimality in terms of the number of oracle calls per node takes place only up to a logarithmic factor and the notion of smoothness. By using mini-batching technique, we show that the proposed methods with stochastic oracle can be additionally parallelized at each node. The considered algorithms can be applied to many data science problems and inverse problems.


1991 ◽  
Vol 109 (2) ◽  
pp. 405-417 ◽  
Author(s):  
C. J. Amick ◽  
J. F. Toland

First we consider an elementary though delicate question about the trajectory in ℝn of a particle in a conservative field of force whose dynamics are governed by the equationHere the potential function V is supposed to have Lipschitz continuous first derivative at every point of ℝn. This is a natural assumption which ensures that the initial-value problem is well-posed. We suppose also that there is a closed convex set C with non-empty interior C° such that V ≥ 0 in C and V = 0 on the boundary ∂C of C. It is noteworthy that we make no assumptions about the degeneracy (or otherwise) of V on ∂C (i.e. whether ∇V = 0 on ∂C, or not); thus ∂C is a Lipschitz boundary because of its convexity but not necessarily any smoother in general. We remark also that there are no convexity assumptions about V and nothing is known about the behaviour of V outside C.


Sign in / Sign up

Export Citation Format

Share Document