scholarly journals Interactions between genetic polymorphisms of glucose metabolizing genes and smoking and alcohol consumption in the risk of type 2 diabetes mellitus

2017 ◽  
Vol 42 (12) ◽  
pp. 1316-1321 ◽  
Author(s):  
Kaiping Gao ◽  
Yongcheng Ren ◽  
Jinjin Wang ◽  
Zichen Liu ◽  
Jianna Li ◽  
...  

The impact of gene-environment interaction on diabetes remains largely unknown. We aimed to investigate if interaction between glucose metabolizing genes and lifestyle factors is associated with type 2 diabetes mellitus (T2DM). Interactions between genotypes of 4 glucose metabolizing genes (MTNR1B, KCNQ1, KLF14, and GCKR) and lifestyle factors were estimated in 722 T2DM patients and 759 controls, using multiple logistic regression. No significant associations with T2DM were detected for the single nucleotide polymorphisms of MTNR1B, KLF14 and GCKR. However, rs151290 (KCNQ1) polymorphisms were found to be associated with risk of T2DM. Compared with AA, the odds ratios (ORs) of AC or CC genotypes for developing T2DM were 1.545 (P = 0.0489) and 1.603 (P = 0.0383), respectively. In stratified analyses, the associations were stronger in smokers with CC than smokers with AA (OR = 3.668, P = 0.013); drinkers with AC (OR = 5.518, P = 0.036), CC (OR = 8.691, P = 0.0095), and AC+CC (OR = 6.764, P = 0.016) than drinkers with AA. Compared with nondrinkers with AA, drinkers who carry AC and CC had 12.072-fold (P = 0.0007) and 8.147-fold (P = 0.0052) higher risk of developing T2DM. In conclusions, rs151290 (KCNQ1) polymorphisms are associated with increased risk of T2DM, alone and especially in interaction with smoking and alcohol.

2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Yang ◽  
Wentao Qiu ◽  
Qian Meng ◽  
Mouze Liu ◽  
Weijie Lin ◽  
...  

Diabetic vascular complications are one of the main causes of death and disability. Previous studies have reported that genetic variation is associated with diabetic vascular complications. In this study, we aimed to investigate the association between GRB10 polymorphisms and susceptibility to type 2 diabetes mellitus (T2DM) vascular complications. Eight single nucleotide polymorphisms (SNPs) in the GRB10 gene were genotyped by MassARRAY system and 934 patients with type 2 diabetes mellitus (T2DM) were included for investigation. We found that GRB10 rs1800504 CC+CT genotypes were significantly associated with increased risk of coronary heart disease (CHD) compared with TT genotype (OR = 2.24; 95%CI: 1.36–3.70, p = 0.002). Consistently, levels of cholesterol (CHOL) (CC+CT vs. TT, 4.44 ± 1.25 vs. 4.10 ± 1.00 mmol/L; p = 0.009) and low density lipoprotein cholesterin (LDL-CH) (CC+CT vs. TT, 2.81 ± 1.07 vs. 2.53 ± 0.82 mmol/L; p = 0.01) in T2DM patients with TT genotype were significant lower than those of CC+CT genotypes. We further validated in MIHA cell that the total cholesterol (TC) level in GRB10-Mut was significantly reduced compared with GRB10-WT; p = 0.0005. Likewise, the reversed palmitic acid (PA) induced lipid droplet formation in GRB10-Mut was more effective than in GRB10-WT. These results suggest that rs1800504 of GRB10 variant may be associated with the blood lipids and then may also related to the risk of CHD in patients with T2DM.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Fangxiao Cheng ◽  
Lu Liu ◽  
Hongli Zhang ◽  
Yi Zhu ◽  
Xiaohua Li ◽  
...  

Abstract Objective: The aim of the present study was to explore the genetic association of single nucleotide polymorphisms (SNPs) in interleukin-16 (IL-16) gene with type 2 diabetes mellitus (T2DM) susceptibility in a Chinese Han population. Methods: In total, 133 T2DM patients and 127 healthy controls matched by age and gender were recruited in the case–control study. IL-16 gene rs4778889 and rs11556218 polymorphisms were genotyped in the two groups via polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Differences in genotype and allele distributions between groups were compared by the χ2 test. All the comparisons were adjusted for age, gender, and body mass index (BMI) by logistic regression. The odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the association strength between IL-16 gene polymorphism and T2DM risk. Results: The TG genotype and G allele frequencies of rs11556218 increased remarkably in the case group than that in controls (45.86 vs 33.86%; 29.70 vs 20.87%), and the differences reached a significant level (P<0.05). After adjusting for age, gender, and BMI, the differences still reached a significant level (P<0.05). Rs11556218 TG genotype carriers had a 1.769-fold increased risk of developing T2DM (OR = 1.769, 95% CI = 1.045–2.994), and G allele was also associated with an increased risk of T2DM (OR = 1.639, 95% CI = 1.087–2.471). IL-16 rs4778889 polymorphism showed no significant association with T2DM risk. Conclusion: IL-16 gene rs11556218 polymorphism was significantly associated with T2DM susceptibility in the Chinese Han population, while rs4778889 was not.


2019 ◽  
Vol 8 (3) ◽  
pp. R55-R70 ◽  
Author(s):  
Ann-Kristin Picke ◽  
Graeme Campbell ◽  
Nicola Napoli ◽  
Lorenz C Hofbauer ◽  
Martina Rauner

The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the well-known complications of T2DM on the cardiovascular system, the eyes, kidneys and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM have a 40–70% increased risk for fractures, despite having a normal to increased bone mineral density, suggesting that other factors besides bone quantity must account for increased bone fragility. This review summarizes the current knowledge on the complex effects of T2DM on bone including effects on bone cells, bone material properties and other endocrine systems that subsequently affect bone, discusses the effects of T2DM medications on bone and concludes with a model identifying factors that may contribute to poor bone quality and increased bone fragility in T2DM.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1612-P
Author(s):  
NADIRA SULTANA KAKOLY ◽  
ARUL EARNEST ◽  
HELENA TEEDE ◽  
LISA MORAN ◽  
DEBORAH LOXTON ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Sayantan Nath ◽  
Sambuddha Das ◽  
Aditi Bhowmik ◽  
Sankar Kumar Ghosh ◽  
Yashmin Choudhury

Background:Studies pertaining to association of GSTM1 and GSTT1 null genotypes with risk of T2DM and its complications were often inconclusive, thus spurring the present study.Methods:Meta-analysis of 25 studies for evaluating the role of GSTM1/GSTT1 null polymorphisms in determining the risk for T2DM and 17 studies for evaluating the role of GSTM1/GSTT1 null polymorphisms in development of T2DM related complications were conducted.Results:Our study revealed an association between GSTM1 and GSTT1 null polymorphism with T2DM (GSTM1; OR=1.37;95% CI =1.10-1.70 and GSTT1; OR=1.29;95% CI =1.04-1.61) with an amplified risk of 2.02 fold for combined GSTM1-GSTT1 null genotypes. Furthermore, the GSTT1 null (OR=1.56;95%CI=1.38-1.77) and combined GSTM1-GSTT1 null genotypes (OR=1.91;95%CI=1.25- 2.94) increased the risk for development of T2DM related complications, but not the GSTM1 null genotype. Stratified analyses based on ethnicity revealed GSTM1 and GSTT1 null genotypes increase the risk for T2DM in both Caucasians and Asians, with Asians showing much higher risk of T2DM complications than Caucasians for the same. </P><P> Discussion: GSTM1, GSTT1 and combined GSTM1-GSTT1 null polymorphism may be associated with increased risk for T2DM; while GSTT1 and combined GSTM1-GSTT1 null polymorphism may increase the risk of subsequent development of T2DM complications with Asian population carrying an amplified risk for the polymorphism.Conclusion:Thus GSTM1 and GSTT1 null genotypes increases the risk for Type 2 diabetes mellitus alone, in combination or with regards to ethnicity.


2011 ◽  
Vol 7 (3) ◽  
pp. 185-189 ◽  
Author(s):  
Richdeep S. Gill ◽  
Arya M. Sharma ◽  
David P. Al-Adra ◽  
Daniel W. Birch ◽  
Shahzeer Karmali

2020 ◽  
Vol 16 ◽  
Author(s):  
Patricio Lopez-Jaramillo ◽  
Jose Lopez-Lopez ◽  
Daniel Cohen ◽  
Natalia Alarcon-Ariza ◽  
Margarita Mogollon-Zehr

: Hypertension and type 2 diabetes mellitus are two important risk factors that contribute to cardiovascular diseases worldwide. In Latin America hypertension prevalence varies from 30 to 50%. Moreover, the proportion of awareness, treatment and control of hypertension is very low. The prevalence of type 2 diabetes mellitus varies from 8 to 13% and near to 40% are unaware of their condition. In addition, the prevalence of prediabetes varies from 6 to 14% and this condition has been also associated with increased risk of cardiovascular diseases. The principal factors linked to a higher risk of hypertension in Latin America are increased adiposity, low muscle strength, unhealthy diet, low physical activity and low education. Besides being chronic conditions, leading causes of cardiovascular mortality, both hypertension and type 2 diabetes mellitus represent a substantial cost for the weak health systems of Latin American countries. Therefore, is necessary to implement and reinforce public health programs to improve awareness, treatment and control of hypertension and type 2 diabetes mellitus, in order to reach the mandate of the Unit Nations of decrease the premature mortality for CVD.


Sign in / Sign up

Export Citation Format

Share Document