scholarly journals Snow cover variability at Polar Bear Pass, Nunavut

2018 ◽  
Vol 4 (4) ◽  
pp. 669-690 ◽  
Author(s):  
Kathy L. Young ◽  
Laura Brown ◽  
Claude Labine

Information on arctic snow covers is relevant for climate and hydrology studies and investigations into the sustainability of both arctic fauna and flora. This study aims to (1) highlight the variability of snow cover at Polar Bear Pass (PBP) at a range of scales: point, local, and regional using both in situ snow cover measurements and remote sensing imagery products; and (2) consider how snow cover at PBP might change in the future. Terrain-based snow surveys documented the end-of-winter snowpacks over several seasons (2008–2010, 2012–2013), and snowmelt was measured daily at typical terrain types. MODIS products (snow cover) were used to document spatial snow cover variability across PBP and Bathurst and Cornwallis Islands. Due to limited data, no significant difference in snow cover duration can be identified at PBP over the period of record. Locally, end-of-winter snow cover does vary across a range of terrain types with snow depths and densities reflecting polar oasis sites. Aspect remains a defining factor in terms of snow cover variability at PBP. Northern areas of the Pass melt earlier. Regionally, PBP tends to melt out earlier than most of Bathurst Island. In the future, we surmise that snowpacks at PBP will be thinner and disappear earlier.

2014 ◽  
Vol 11 (11) ◽  
pp. 12531-12571 ◽  
Author(s):  
S. Gascoin ◽  
O. Hagolle ◽  
M. Huc ◽  
L. Jarlan ◽  
J.-F. Dejoux ◽  
...  

Abstract. The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (we) and 105 mm respectively, for both MOD10A1 and MYD10A1. Kappa coefficients are within 0.74 and 0.92 depending on the product and the variable. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both datasets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decreases over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gapfilling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band. We finally analyze the snow patterns for the atypical winter 2011–2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.


2015 ◽  
Vol 19 (5) ◽  
pp. 2337-2351 ◽  
Author(s):  
S. Gascoin ◽  
O. Hagolle ◽  
M. Huc ◽  
L. Jarlan ◽  
J.-F. Dejoux ◽  
...  

Abstract. The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the time above 1600 m between December and April. We finally analyze the snow patterns for the atypical winter 2011–2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.


2019 ◽  
Vol 23 (7) ◽  
pp. 3021-3036
Author(s):  
Andri Gunnarsson ◽  
Sigurður M. Garðarsson ◽  
Óli G. B. Sveinsson

Abstract. This study presents a spatio-temporal continuous data set for snow cover in Iceland based on the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000 to 2018. Cloud cover and polar darkness are the main limiting factors for data availability of remotely sensed optical data at higher latitudes. In Iceland the average cloud cover is 75 % with some spatial variations, and polar darkness reduces data availability from the MODIS sensor from late November until mid January. In this study MODIS snow cover data were validated over Iceland with comparison to manned in situ observations and Landsat 7/8 and Sentinel 2 data. Overall a good agreement was found between in situ observed snow cover, with an average agreement of 0.925. Agreement of Landsat 7/8 and Sentinel 2 was found to be acceptable, with R2 values 0.96, 0.92 and 0.95, respectively, and in agreement with other studies. By applying daily data merging from Terra and Aqua and a temporal aggregation of 7 d, unclassified pixels were reduced from 75 % to 14 %. The remaining unclassified pixels after daily merging and temporal aggregation were removed with classification learners trained with classified data, pixel location, aspect and elevation. Various snow cover characteristic metrics were derived for each pixel such as snow cover duration, first and last snow-free dates, deviation and dynamics of snow cover and trends during the study period. On average the first snow-free date in Iceland is 27 June, with a standard deviation of 19.9 d. For the study period a trend of increasing snow cover duration was observed for all months except October and November. However, statistical testing of the trends indicated that there was only a significant trend in June.


2019 ◽  
Author(s):  
Andri Gunnarsson ◽  
Sigurður M. Garðarsson ◽  
Óli G. B. Sveinsson

Abstract. This study presents a spatio-temporal continuous data set for snow cover in Iceland based on the Moderate Resolution Imaging Spectroradiometer (Modis) from 2000–2018. Cloud cover and polar darkness are the main limiting factors for data availability of remotely sensed optical data at higher latitudes. In Iceland the average cloud cover is 75 % with some spatial variations and polar darkness reduces data availability from the Modis sensor from late November until mid January. In this study Modis snow cover data were validated over Iceland with comparison to manned in-situ observations, Landsat 7/8 and Sentinel 2 data. Overall a good agreement was found between in-situ observed snow cover with an average agreement of 0.925. Agreement of Landsat 7,8 and Sentinel 2 was found to be acceptable with R2 values 0.96, 0.92 and 0.95, respectively, and in agreement with other studies. By applying daily data merging from Terra and Aqua and temporal aggregation of 7 days, unclassified pixels were reduced from 75 % to 14 %. The remaining unclassified pixels after daily merging and temporal aggregation were removed with classification learners trained with classified data, pixel location, aspect and elevation. Various snow cover characteristic metrics were derived for each pixel such as snow cover duration, first and last snow free date, deviation and dynamics of snow cover and trends during the study period. On average the first snow free date in Iceland is June 27 with a standard deviation of 19.9 days. For the study period a trend of increasing snow cover duration was observed for all months except October and November. However, statistical testing of the trends indicated that there was only a significant trend in June.


2006 ◽  
Vol 53 (1) ◽  
pp. 73-75
Author(s):  
N. Miletic ◽  
D. Stojiljkovic ◽  
M. Inic ◽  
M. Prekajski ◽  
A. Celebic ◽  
...  

Great importance in detecting cancer in the phase of in situ lays in the fact that the epithelial layer is deprived of blood and lymph vessels, so metastases may develop only when basal membrane has been broken. This paper includes 46 operated women in whom it preoperatively had been verified suspect non-palpable lesion. The preoperative diagnostics included use of high- resolution mammography, aimed mammography, palpatory examination, as well as fine-needle aspiration (FNA), biopsy and cytologic analysis of the sample. The methodology of this work implies the use of stereotaxic marking, specimen mammography and ex-tempore pathohistology analysis. Out of 46 investigated patients in clinical stage T0N0M0, in whom there were no signs of malignant disease, and according to suspect lesion of initial screening mammography, malignant lesions of breast tissue were diagnosed in 19 patients (41%) intraoperatively. Three of these lesions (15,8%) were histopathologically verified as in situ. Comparing our results with data of the Institute of oncology and radiology of Serbia hospital registry (IORS) for the year 2001, from 1173 patients registered with malignant lesions, only 16 ones (1,4%) had in situ cancer, operated on the basis of the suspect mammography of clinical stage T0N0M0. Statistically significant difference was found related to the number of detected cancers in this early phase of the breast malignant disease. This limits surgical intervention to tumorectomy, with preservation of the remaining breast tissue, what brings to healing, justifying in that way, screening examinations and routine application of the most contemporary diagnostic procedures.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 404
Author(s):  
Tong Heng ◽  
Xinlin He ◽  
Lili Yang ◽  
Jiawen Yu ◽  
Yulin Yang ◽  
...  

To reveal the spatiotemporal patterns of the asymmetry in the Tianshan mountains’ climatic warming, in this study, we analyzed climate and MODIS snow cover data (2001–2019). The change trends of asymmetrical warming, snow depth (SD), snow coverage percentage (SCP), snow cover days (SCD) and snow water equivalent (SWE) in the Tianshan mountains were quantitatively determined, and the influence of asymmetrical warming on the snow cover activity of the Tianshan mountains were discussed. The results showed that the nighttime warming rate (0.10 °C per decade) was greater than the daytime, and that the asymmetrical warming trend may accelerate in the future. The SCP of Tianshan mountain has reduced by 0.9%. This means that for each 0.1 °C increase in temperature, the area of snow cover will reduce by 5.9 km2. About 60% of the region’s daytime warming was positively related to SD and SWE, and about 48% of the region’s nighttime warming was negatively related to SD and SWE. Temperature increases were concentrated mainly in the Pamir Plateau southwest of Tianshan at high altitudes and in the Turpan and Hami basins in the east. In the future, the western and eastern mountainous areas of the Tianshan will continue to show a warming trend, while the central mountainous areas of the Tianshan mountains will mainly show a cooling trend.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Min-jie Ye ◽  
Cai-yuan Liu ◽  
Rong-feng Liao ◽  
Zheng-yu Gu ◽  
Bing-ying Zhao ◽  
...  

Purpose. To compare the change of anterior corneal higher-order aberrations (HOAs) after laser in situ keratomileusis (LASIK), wavefront-guided LASIK with iris registration (WF-LASIK), femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK), and small incision lenticule extraction (SMILE).Methods. In a prospective study, 82 eyes underwent LASIK, 119 eyes underwent WF-LASIK, 88 eyes underwent FS-LASIK, and 170 eyes underwent SMILE surgery. HOAs were measured with Pentacam device preoperatively and 6 months after surgery. The aberrations were described as Zernike polynomials, and analysis focused on total HOAs, spherical aberration (SA), horizontal coma, and vertical coma over 6 mm diameter central corneal zone.Results. Six months postoperatively, all procedures result in increase of anterior corneal total HOAs and SA. There were no significant differences in the induced HOAs between LASIK and FS-LASIK, while SMILE induced fewer total HOAs and SA compared with LASIK and FS-LASIK. Similarly, WF-LASIK also induced less total HOAs than LASIK and FS-LASIK, but only fewer SA than FS-LASIK (P<0.05). No significant difference could be detected in the induced total HOAs and SA between SMILE and WF-LASIK, whereas SMILE induced more horizontal coma and vertical coma compared with WF-LASIK (P<0.05).Conclusion. FS-LASIK and LASIK induced comparable anterior corneal HOAs. Compared to LASIK and FS-LASIK, both SMILE and WF-LASIK showed advantages in inducing less total HOAs. In addition, SMILE also possesses better ability to reduce the induction of SA in comparison with LASIK and FS-LASIK. However, SMILE induced more horizontal coma and vertical coma compared with WF-LASIK, indicating that the centration of SMILE procedure is probably less precise than WF-LASIK.


Sign in / Sign up

Export Citation Format

Share Document