scholarly journals Hyperspectral analysis of algal biomass in northern lakes, Churchill, MB, Canada

2019 ◽  
Vol 5 (4) ◽  
pp. 240-256
Author(s):  
Kimisha Ghunowa ◽  
Andrew Scott Medeiros ◽  
Richard Bello

A hyperspectral approach to quantify algal biomass was studied across 30 shallow ponds in the Hudson Bay Lowlands near Churchill, MB. Normalized difference algal indices (NDAI) were calculated based on hyperspectral measurements of the reflectance collected on shore with a hand-held spectrometer in parallel to estimations of biomass with an in vivo fluorometer designed for benthic algae. Algal biomass and coarse assemblages were differentiated through their spectral reflectance as a demonstration of concept for future upscaling that would be necessary for regional monitoring using remote sensing technology. Results indicated strong agreements between the calculated NDAI for measured reflectance from each pond and that of the isolated benthic zone. Cyanobacteria were the dominant component of the algal community for most ponds. As such, measures of reflectance and use of simple NDAIs may be able to characterize the total biomass of northern ponds. However, the distinction between algal groups may require independent validation of algal assemblages for estimations beyond total biomass. Nonetheless, hyperspectral analysis could provide a strong potential for monitoring northern freshwater systems at a regional scale.

Author(s):  
Kuimei Qian ◽  
Martin Dokulil ◽  
Wan Lei ◽  
Yuwei Chen

Poyang Lake, which is the largest freshwater lake in China, has a seasonal flooding cycle that significantlychanges the water level every year. The aim of this study was to research the effects of water-level changeson periphytic algal assemblages in Poyang Lake. Dynamic shift of periphytic algal biomass were studied fromNovember 2016 to July 2019. Periphytic algal biomass and species composition were analyzed microscopically, andphysicochemical conditions were measured. There were significant seasonal variations in the community distributionof periphytic algae. The biomass of the periphyton ranged from 8 to 22,636 mg m-2. Periphytic algal biomassranged from 30 to 622 mg m-2 with the average of 204 mg m-2 in the LWL phase; periphytic algal biomass rangedfrom 8 to 21,839 mg m-2, with the average of 3,399 mg m-2 in the IWL phase. It ranged from 166 to 22,636 mgm-2, with the average 4,320 mg m-2 in the HWL phase and from 16 to 3,231 mg m-2 with the average of 585 mgm-2 in the DWL phase. There were temporal variations in periphytic algal community structure in Poyang Lake.Cryptophyceae dominated in algal periphyton from November 2016 to February 2017. Bacillariophyceae dominatedfrom March to July 2017 (increasing water-level phases). Pyrrophyceae and Euglenophyceae were dominant fromAugust and September (high-water-level phase) in 2017. Bacillariophyceae dominated through 2018 with occasionaldominance of Cryptophyceae from January to June and the occasional dominance of Chlorophyceae fromJuly to December. Chlorophyceae dominated from January to July in 2019 with occasional dominance of Bacillariophyceae.The water-level variations led to environmental heterogeneity in Poyang Lake, creating heterogeneoushabitats for algal periphyton. Our study revealed the primary importance of water level, water temperature, conductivity,total nitrogen, nitrite and total phosphorus as abiotic local factors structuring the periphytic algal communityin Poyang Lake. The water-level changes did not prevent growth of periphytic algae, but it did change the periphyticalgal community assemblages. This research provides data on the periphytic algae in Poyang Lake and will beuseful for establishing biological indicators of environmental changes and protecting Poyang Lake in the future.


1990 ◽  
Vol 47 (10) ◽  
pp. 2057-2065 ◽  
Author(s):  
Paul V. McCormick

Artificial pools were used to test for interactions among dominant consumer and producer populations that coexist in isolated pools of an ephemeral stream each summer. Nitrogen and/or phosphorus were supplied to one set of pools; herbivorous snails and crayfish and a predaceous centrarchid were added in different combinations to other pools. Algal growth was measured inside and outside wire cages placed in pools to exclude herbivores and/or predators. Algal biomass and the abundance of most algal species were increased by nitrogen enrichment. Algal biomass was also enhanced by addition of consumers. There were few differences in structure between algal assemblages inside and outside cages in any treatment. Under conditions of nitrogen limitation, moderate levels of herbivory can enhance algal growth. Positive effects are greatest at the microsite level and may depend on the ability of algal species to resist digestion by grazers. Predators may affect the algal assemblage indirectly by reducing herbivore survival or activity and directly by converting nutrients stored in herbivore biomass into a form available for algal growth. Because the importance of different trophic connections may vary among ecosystems, experimentation must consider all those that are potentially important.


2020 ◽  
Vol 92 (1) ◽  
pp. 261-274
Author(s):  
Jie Zhang ◽  
Huiyu Zhu ◽  
Siwei Yu ◽  
Jianwei Ma

Abstract The ability to calculate the seismogram of an earthquake at a local or regional scale is critical but challenging for many seismological studies because detailed knowledge about the 3D heterogeneities in the Earth’s subsurface, although essential, is often insufficient. Here, we present an application of compressed sensing technology that can help predict the seismograms of earthquakes at any position using data from past events randomly distributed in the same area in Jinggu County, Yunnan, China. This first data-driven approach for calculating seismograms generates a large dataset in 3D with a volume encompassing an active fault zone. The input number of earthquakes comprises only 1.27% of the total output events. We use the output data to create a database intended to find the best-matching waveform of a new event by applying an earthquake search engine, which instantly reveals the hypocenter and focal-mechanism solution.


1988 ◽  
Vol 45 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Hunter J. Carrick ◽  
Rex L. Lowe

The possibility that benthic algae in the nearshore area of Lake Michigan might be growth limited by Si was tested using nutrient-releasing substrata. Nutrient treatments were Si, N + P, Si + N + P, and controls (CONT) and were sampled after 7, 14, and 31 d of exposure. Addition of Si alone had little stimulatory effect on algal biomass, while enrichment with Si + N + P led to the greatest increase in chlorophyll a, particulate Si, total biovolume, and diatom biovolume after 14 d of incubation (P < 0.0001). By day 31, communities on CONT and Si substrata exhibited little change in biomass and remained dominated by diatoms (98% of total biovolume), while algal biomass on both N + P and Si + N + P substrata increased more than eightfold (P < 0.0001) and consisted mainly of Stigeoclonium tenue (Chlorophyta) and Schizothrix calcicolas (Cyanophyta). These results indicate that benthic diatoms in Lake Michigan are not currently limited by Si, but may become Si limited following enrichment with N + P.


2000 ◽  
Vol 57 (S2) ◽  
pp. 136-145 ◽  
Author(s):  
Dolors Planas ◽  
Mélanie Desrosiers ◽  
S-Raphaëlle Groulx ◽  
Serge Paquet ◽  
Richard Carignan

Pelagic and benthic algal biomass and pelagic algal community structure were measured in Boreal Shield lakes impacted by forest harvesting and wildfires (Haute-Mauricie, Québec). Sixteen reference lakes in which the watershed has been unperturbed for at least 40 years, seven harvested lake watersheds (logged in 1995), and nine lake watersheds burnt in 1995 were sampled for 3 years following harvesting or wildfires. From 1996 to 1998, repeated-measures ANOVA showed significant effects between treatment and sampling years for pelagic chlorophyll a (Chl a) and biomass, but for 1997-1998 benthic Chl a, repeated-measures ANOVA showed only significant treatment effects. Chl a concentrations increased 1.4- to 3-fold in perturbed lakes as compared with reference lakes. Areal pelagic Chl a (milligrams per square metre) was lower than estimated littoral Chl a in perturbed lakes. The pelagic algal community was dominated by mixotrophic nanoflagellates in reference lakes. Watershed perturbation induced differential changes in pelagic algal communities: mixotrophic nanoflagellates increased in harvested lakes and photoautotrophic diatoms in burnt lakes. Considering only perturbed lakes, algal biomass was proportional to the fraction of the catchment area perturbed divided by the surface area of lakes in the catchment.


2003 ◽  
Vol 81 (8) ◽  
pp. 848-858 ◽  
Author(s):  
Jennifer G Winter ◽  
Peter J Dillon ◽  
Carolyn Paterson ◽  
Ron A Reid ◽  
Keith M Somers

The influence of golf course operation and construction on benthic algal communities in headwater streams on the Precambrian Shield was investigated using a reference condition approach. Streams were sampled for water chemistry and epilithic benthic algae on operational golf courses, on courses under construction, and from nearby minimally impacted reference locations. Epilithic diatom community structure was different in reference streams than in operational golf course streams, the latter indicating nutrient enrichment, higher pH, and disturbance. Full counts of diatoms and soft algae revealed that there was a lower proportion of diatoms relative to other algal groups, cyanobacteria in particular, in operational golf course streams compared with samples from reference locations. Dominance by a single taxon was also significantly higher in operational golf course streams. Although differences relative to the reference streams were less marked for the streams on courses under construction, full counts of diatoms and soft algae provided evidence of disturbance and nutrient enrichment. In particular, high proportions of filamentous green algae were recorded. Overall, our results indicate that golf course land management on the Shield is associated with significant differences in the abundance of certain benthic algal taxa in headwater streams.Key words: diatoms, periphyton, biomonitoring, golf courses, canonical correspondence analysis (CCA), Precambrian Shield.


2011 ◽  
Vol 24 (15) ◽  
pp. 4109-4125 ◽  
Author(s):  
Makoto Saito ◽  
Akihiko Ito ◽  
Shamil Maksyutov

Abstract This study evaluates a modeled precipitation field and examines how its bias affects the modeling of the regional and global terrestrial carbon cycle. Spatial and temporal variations in precipitation produced by the Japanese 25-yr reanalysis (JRA-25)/Japan Meteorological Agency (JMA) Climate Data Assimilation System (JCDAS) were compared with two large-scale observation datasets. JRA-25/JCDAS captures the major distribution patterns of annual precipitation and the features of the seasonal cycle. Notable problems include over- and undersimulated areas of precipitation amount in South America, Africa, and Southeast Asia in the 30°N–30°S domain and a large discrepancy in the number of rainfall days. The latter problem was corrected by using a stochastic model based on the probability of the occurrence of dry and wet day series; the monthly precipitation amount was then scaled by the comparison data. Overall, the corrected precipitation performed well in reproducing the spatial distribution of and temporal variations in total precipitation. Both the corrected and original precipitation data were used to simulate regional and global terrestrial carbon cycles using the prognostic biosphere model Vegetation Integrative Simulator for Trace Gases (VISIT). Following bias correction, the model results showed differences in zonal mean photosynthesis uptake and respiration release ranging from −2.0 to +3.3 Pg C yr−1, compared with the original data. The difference in the global terrestrial net carbon exchange rate was 0.3 Pg C yr−1, reflecting the compensation of coincident increases or decreases in carbon sequestration and respiration loss. At the regional scale, the ecosystem carbon cycle and canopy structure, including seasonal variations in autotrophic and heterotrophic respiration and total biomass, were strongly influenced by the input precipitation data. The results highlight the need for precise precipitation data when estimating the global terrestrial carbon balance.


1985 ◽  
Vol 63 (12) ◽  
pp. 2332-2339 ◽  
Author(s):  
L. G. Goldsborough ◽  
G. G. C. Robinson

Annual sequences of biomass, species diversity, and community composition of epiphytic diatoms on a dense mat of Lemna minor L. growing in a freshwater marsh are described. In 2 successive years, maximum biomass occurred in early spring prior to occlusion of the water surface by the mat, while diversity reached relative maxima in the early summer (during a period of declining total biomass) and late fall. Ambient air temperature (possibly through a relationship with in situ metabolic activity and nutrient availability) was significantly correlated with community ordination scores on a temporal basis. Depth profile maxima of diatom abundance on vertically positioned artificial substrata occurred below the mat, suggesting that light limitation of algal growth within dense mats may be of lesser importance. Dominant diatom species in the spring and fall were generally ubiquitous in the surrounding marsh, while the major taxa in midsummer, Achnanthes hungarica, Amphora veneta, and Navicula twymaniana, may be specific to the Lemna microhabitat. The development of algal community specificity within a defined seasonal range is discussed in terms of the relative importance of host exudates versus exogenous nutrients as the basis for algal-substratum associations.


2005 ◽  
Vol 23 (1) ◽  
pp. 43 ◽  
Author(s):  
L W Zemke-White ◽  
E L Beatson

The species composition of algal assemblages inside territories of the damselfish Stegastes nigricans was examined from Nananu-i-ra Island, Fiji and Rarotonga, Cook Islands. A total of 32 algal species were identified, the majority of them Rhodophytes (24 species). Seven species were unique to Rarotonga, six were unique to Fiji, with the remaining 19 species recorded at both locations. The biodiversity of territories was similar at both locations. The red alga, Herposiphonia secunda, was the most abundant species found, comprising 40.33% � 3.51SE and 33.94% � 3.58SE from Rarotonga and Fiji respectively. Gelidiopsis intricata, Polysiphonia sp., Aglaothamnion cordatum, and various Cyanophytes were also abundant at both locations. As a group, filamentous algae accounted for 70.35% of the algae found within the territories at all sites. We suggest that if S. nigricans are actively weeding their territories, they are selecting filamentous algae, and particularly Herposiphonia sp. and Polysiphonia sp.


Sign in / Sign up

Export Citation Format

Share Document