Response of Lake Michigan Benthic Algae to in situ Enrichment with Si, N, and P

1988 ◽  
Vol 45 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Hunter J. Carrick ◽  
Rex L. Lowe

The possibility that benthic algae in the nearshore area of Lake Michigan might be growth limited by Si was tested using nutrient-releasing substrata. Nutrient treatments were Si, N + P, Si + N + P, and controls (CONT) and were sampled after 7, 14, and 31 d of exposure. Addition of Si alone had little stimulatory effect on algal biomass, while enrichment with Si + N + P led to the greatest increase in chlorophyll a, particulate Si, total biovolume, and diatom biovolume after 14 d of incubation (P < 0.0001). By day 31, communities on CONT and Si substrata exhibited little change in biomass and remained dominated by diatoms (98% of total biovolume), while algal biomass on both N + P and Si + N + P substrata increased more than eightfold (P < 0.0001) and consisted mainly of Stigeoclonium tenue (Chlorophyta) and Schizothrix calcicolas (Cyanophyta). These results indicate that benthic diatoms in Lake Michigan are not currently limited by Si, but may become Si limited following enrichment with N + P.

1987 ◽  
Vol 44 (12) ◽  
pp. 2155-2163 ◽  
Author(s):  
I. M. Gray

Differences between nearshore and offshore phytoplankton biomass and composition were evident in Lake Ontario in 1982. Phytoplankton biomass was characterized by multiple peaks which ranged over three orders of magnitude. Perhaps as a consequence of the three times higher current velocities at the northshore station, phytoplankton biomass ranged from 0.09 to 9.00 g∙m−3 compared with 0.10 to 2.40 g∙m−3 for the midlake station. Bacillariophyceae was the dominant group at the northshore station until September when Cyanophyta contributed most to the biomass (83%). Although Bacillariophyceae was the principal component of the spring phytoplankton community at the midlake station, phytoflagellates (49%) and Chlorophyceae (25%) were responsible for summer biomass, with the Chlorophyceae expanding to 80% in the fall. The seasonal pattern of epilimnetic chlorophyll a correlated with temperature. While chlorophyll a concentrations were similar to values from 1970 and 1972, algal biomass had declined and a number of eutrophic species (Melosira binderana, Stephanodiscus tenuis, S. hantzschii var. pusilla, and S. alpinus) previously found were absent in 1982.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1409
Author(s):  
Hamdhani Hamdhani ◽  
Drew E. Eppehimer ◽  
David Walker ◽  
Michael T. Bogan

Chlorophyll-a measurements are an important factor in the water quality monitoring of surface waters, especially for determining the trophic status and ecosystem management. However, a collection of field samples for extractive analysis in a laboratory may not fully represent the field conditions. Handheld fluorometers that can measure chlorophyll-a in situ are available, but their performance in waters with a variety of potential light-interfering substances has not yet been tested. We tested a handheld fluorometer for sensitivity to ambient light and turbidity and compared these findings with EPA Method 445.0 using water samples obtained from two urban lakes in Tucson, Arizona, USA. Our results suggested that the probe was not sensitive to ambient light and performed well at low chlorophyll-a concentrations (<25 µg/L) across a range of turbidity levels (50–70 NTU). However, the performance was lower when the chlorophyll-a concentrations were >25 µg/L and turbidity levels were <50 NTU. To account for this discrepancy, we developed a calibration equation to use for this handheld fluorometer when field monitoring for potential harmful algal blooms in water bodies.


2010 ◽  
Vol 67 (8) ◽  
pp. 1291-1302 ◽  
Author(s):  
Helder Cunha Pereira ◽  
Norman Allott ◽  
Catherine Coxon

This paper compares, for the first time, nutrient levels and chlorophyll a measured in a set of seasonal lakes with those reported for permanent lakes in the literature. Twenty-two turloughs (karstic seasonal lakes) in western Ireland were sampled monthly from the onset of flooding (October) until they dried out (6 to 9 months). The turloughs showed similar levels of nutrients and chlorophyll a to those reported for Irish and international lakes. Chlorophyll a peaked between November and February in the majority of turloughs, sometimes with values higher than those measured in mesotrophic lakes in summer. A significant log-linear regression was found between total phosphorus and chlorophyll a, which suggests P limitation of algal biomass in the majority of the turloughs. The regression characteristics were not significantly different than those described in similar studies of permanent lakes. Patterns in seasonal variation of nutrients are also presented, their underlying causes being discussed in relation to their transport within catchments. Our results show that despite being predominantly winter phenomena, turloughs can be as productive as permanent lakes.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


1995 ◽  
Vol 52 (2) ◽  
pp. 416-424 ◽  
Author(s):  
James W. LaBaugh

Algal chlorophyll a is commonly used as a surrogate for algal biomass. Data from three lakes in western Nebraska, five wetlands in north-central North Dakota, and two lakes in north-central Minnesota represented a range in algal biovolume of over four orders of magnitude and a range in chlorophyll a from less than 1 to 380 mg∙m−3. Analysis of these data revealed that there was a linear relation, log10 algal biovolume = 5.99 + 0.09 chlorophyll a (r2 = 0.72), for cases in which median values of chlorophyll a for open-water periods were less than 20 mg∙m−3. There was no linear relation in cases in which median chlorophyll a concentrations were larger than 20 mg∙m−3 for open-water periods, an occurrence found only in shallow prairies lakes and wetlands for years in which light penetration was the least.


1998 ◽  
Vol 25 (2) ◽  
pp. 189 ◽  
Author(s):  
A. Thiele ◽  
G.H. Krause ◽  
K. Winter

Photoinhibition of photosynthesis was studied in situ in leaves of several species of plants growing in natural treefall gaps of a tropical lowland forest (Barro Colorado Island, Panama). Leaves showed several features typical of sun-acclimation: relatively high pools of total carotenoids and xanthophyll cycle pigments and high ratios of chlorophyll a to b. During 1–2 h periods of exposure to direct mid-day sun, all leaves experienced substantial photoinhibition as indicated by a marked decline in the ratio of variable to maximum chlorophyll a fluorescence emission, FV/FM, detected after 10 min of dark adaptation. After return to shade, these ‘dark-adapted’ FV/FM ratios increased with biphasic kinetics, similar to previous findings under controlled conditions in the laboratory. A phase lasting about 1 h accounted for most of the recovery of FV/FM and was followed by a slow phase which proceeded until sunset. The decline in FV/FM during photoinhibition and the fast phase of recovery correlated closely with the amounts of zeaxanthin in the leaves. Given the small portion of the second recovery phase which has previously been attributed to turnover of the D1 protein in Photosystem II, high xanthophyll cycle activity in these gap leaves is probably responsible for the major part of photoinhibition, providing an efficient energy dissipation pathway during periods of high sunlight exposure.


1976 ◽  
Vol 12 (2) ◽  
pp. 242-246 ◽  
Author(s):  
Hans W. Paerl ◽  
Max M. Tilzer ◽  
Charles R. Goldman

Author(s):  
Caitlyn C. Mayer ◽  
Khalid A. Ali

The Ashepoo, Combahee, Edisto (ACE) Basin in South Carolina is one of the largest undeveloped estuaries in the Southeastern United States. This system is monitored and protected by several government agencies to ensure its health and preservation. However, as populations in surrounding cities rapidly expand and land is urbanized, the surrounding water systems may decline from an influx of contaminants, leading to hypoxia, fish kills, and eutrophication. Conventional in situ water quality monitoring methods are timely and costly. Satellite remote sensing methods are used globally to monitor water systems and can produce an instantaneous synopsis of color-producing agents (CPAs), including chlorophyll-a, suspended matter (TSM), and colored-dissolved organic matter by applying bio-optical models. In this study, field, laboratory, and historical land use land cover (LULC) data were collected during the summers of 2002, 2011, 2015, and 2016. The results indicated higher levels of chlorophyll, ranging from 2.94 to 12.19 μg/L, and TSM values were from 60.4 to 155.2 mg/L between field seasons, with values increasing with time. A model was developed using multivariate, partial least squares regression (PLSR) to identify wavelengths that are more sensitive to chlorophyll-a (R2 = 0.49; RMSE = 1.8 μg/L) and TSM (R2 = 0.40; RMSE = 12.9 mg/L). The imbrication of absorption and reflectance features characterizing sediments and algal species in ACE Basin waters make it difficult for remote sensors to distinguish variations among in situ concentrations. The results from this study provide a strong foundation for the future of water quality monitoring and for the protection of biodiversity in the ACE basin.


2017 ◽  
Vol 14 (4) ◽  
pp. 692-706 ◽  
Author(s):  
Baghdad Science Journal

This study focused on benthic algae (epipelic and attached algae on concrete lining stream) in Bani-Hassan stream in Holly Karbala, Iraq. The qualitative and quantitative studies of benthic algae were done by collecting 240 samples from five sites in the study area for the period from December 2012 to November 2013. Also, the environmental variables of the stream were examined in term of temporary and spatial. The results showed that the stream was alkaline, hard, oligohaline and a well aerated. The total nitrogen to the total phosphorus (TN: TP) ratio indicates nitrogen limitation. 129 species of benthic algae belonging to 57 genera were identified. Bacillariophyceae (diatoms) was the predominant taxon (95 species) followed by Chlorophyceae (16 species), Cyanophyceae (14 species), Euglenophyceae (3 species) and Pyrophyceae (one species). Some genera were found throughout the study period: Nitzschia, Navicula, Cymbella, Gomphonema, Surirella, Cocconeis, Aulacoseira, Oscillatoria, Lyngbya, Spirulina, and ? Scenedesmus. Site 3 recorded the highest total number of algae in spring 2013, and the lowest total number was at site 5 in Autumn 2013. The chlorophyll-a concentration did not match the total number of algae.


Sign in / Sign up

Export Citation Format

Share Document