Indicators of population viability in red spruce, Picea rubens. I. Reproductive traits and fecundity

2000 ◽  
Vol 78 (7) ◽  
pp. 928-940 ◽  
Author(s):  
A Mosseler ◽  
J E Major ◽  
J D Simpson ◽  
B Daigle ◽  
K Lange ◽  
...  

Red spruce (Picea rubens Sarg.) has experienced a substantial decline across most of its range in eastern North America over the past century and probably also in the disjunct Ontario populations where it now occurs only in small isolated stands. Measurements of cone and seed traits from natural populations were used as indicators of the reproductive and genetic status of red spruce across the northern margins of its range in Canada. Cone and seed traits were quantified to provide reproductive benchmarks for assessing and monitoring population viability. Reduced fecundity and seedling height growth were observed in some of the smallest Ontario populations, suggesting some inbreeding depression in both vegetative and reproductive components of fitness. Nevertheless, the reproductive status of these small isolated Ontario populations compared favorably with the much larger, more extensive Maritime populations in Nova Scotia and New Brunswick. Significantly higher proportions of aborted (nonpollinated) seeds and lower proportions of filled seeds suggested poorer pollination conditions in the Maritimes in 1996. The proportion of empty seed, which was used to estimate inbreeding levels, was significantly and negatively related to seedling height growth. In the short-term, the Ontario populations, which probably represent relatively recent remnants of a broader past distribution, generally appeared to be quite resilient to the effects of small population size on fecundity and progeny fitness. In the longer term, continuing decline in population sizes and numbers may be expected to erode reproductive success and genetic diversity through the effects of inbreeding, genetic drift, and changes in mating behavior. The reproductive indicators described here have general validity for assessing and monitoring reproductive and genetic aspects of population viability in conifers.Key words: Picea rubens, reproductive success, reproductive fitness indicators, inbreeding, population viability, conservation.


2000 ◽  
Vol 78 (7) ◽  
pp. 941-956 ◽  
Author(s):  
Om P Rajora ◽  
Alex Mosseler ◽  
John E Major

Red spruce (Picea rubens Sarg.) has become increasingly rare across large portions of its range in eastern North America as a result of a general and widespread decline over the past century. Genetic diversity, population genetic structure, outcrossing rates in the filled seeds, and actual inbreeding levels were characterized in five small, isolated, remnant red spruce populations from the disjunct northwestern limits of its range in Ontario and five populations from the larger, more extensive Maritime populations of Nova Scotia and New Brunswick to determine genetic and reproductive status, to provide some benchmarks for monitoring genetic changes resulting from isolation and restricted population sizes, and to assist the development of restoration and conservation strategies. Thirty-seven allozyme loci coding for 15 enzymes were used for genetic diversity assessments, and six of the most polymorphic loci were used for mating system determination. On average, 29.1% (95% criterion) of the loci were polymorphic, the number of alleles per locus was 1.60, and the observed and expected heterozygosities were 0.097 and 0.100, respectively. The Ontario populations were comparable to or slightly less genetically variable than those from the Maritimes. Only 4.7% of the detected genetic variation was among stands; the remainder was among individuals within stands. The Maritime populations were genetically less differentiated from each other than those in Ontario. With the exception of three Maritime populations clustering tightly in one group, there was no clear separation of Ontario red spruce populations from Maritime red spruce populations based on genetic distance as well as canonical discriminant analyses. The average multilocus (tm) and single-locus (ts) population outcrossing rates were 0.595 and 0.558, respectively, indicating a comparatively high tolerance for inbreeding up to the filled seed stage of development in red spruce. The Ontario populations, on average, showed higher outcrossing rates (tm = 0.654, ts = 0.641) than the Maritime populations (tm = 0.535, ts = 0.475). Individual family outcrossing rates were similar to their respective population outcrossing rates and no significant differences were observed among families within populations for the multilocus estimates. When such high levels of inbreeding in filled seeds were combined with the proportions of empty (post-pollination-aborted) seeds, it appears that actual inbreeding levels may vary from 48 to 86%. The highest inbreeding levels occurred in the smallest, most isolated Ontario populations and in those populations most likely to have been affected by poorer pollination conditions. Allozyme variation indicates that in the short term, extant remnants of Ontario red spruce have maintained their genetic diversity and integrity. For artificial restoration of red spruce in Ontario, local seed sources could be used without undue concern over losses of genetic diversity. However, over the longer term, genetic drift and inbreeding may be expected to result in further losses of genetic diversity and (or) reproductive fitness if population sizes, numbers, and distribution continue to decline.Key words: Picea rubens, allozymes, gene conservation, restoration, genetic diversity, population structure, outcrossing rates, inbreeding.





2000 ◽  
Vol 78 (7) ◽  
pp. 928-940 ◽  
Author(s):  
A. Mosseler ◽  
J.E. Major ◽  
J.D. Simpson ◽  
B. Daigle ◽  
K. Lange ◽  
...  


Castanea ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. 128
Author(s):  
John R. Butnor ◽  
Brittany M. Verrico ◽  
Kurt H. Johnsen ◽  
Christopher A. Maier ◽  
Victor Vankus ◽  
...  


2020 ◽  
Author(s):  
Efrat Dener ◽  
Hagai Shemesh ◽  
Itamar Giladi

Abstract Aims The evolution and expression of dispersal-related traits are intertwined with those of other life-history functions and are manifested within various physiological constraints. Such a relationship is predicted between inbreeding levels and dispersability, which may be anatomically and ontogenetically linked so that the selection pressures on one may affect the other. While both the effect of inbreeding on reproductive success and on dispersal strategies received much attention, only a few studies considered both simultaneously. Furthermore, such studies often rely on two dichotomic representations of breeding and dispersal: using selfing vs. outcrossing as a representation of breeding level, and dispersal ratio as the sole representation of dispersal strategy. Methods Here we used pollination experiments in the heterocarpic Crepis sancta (Asteraceae) to expand in two different manners on the common practice of using dichotomic representations of breeding and dispersal. First, we used pollination treatments that represent a continuum from selfing through pollination by kin to pollination by a distant neighbor. Second, we measured a whole set of continuous morphological and dispersal-related traits, in addition to measurements of reproductive success and dispersal ratio. Important findings The proportion of developed capitula and the number of both dispersed and non-dispersed achenes were significantly lower in the self-pollination treatment in comparison to the out-crossed treatments. The effect of pollen sources on dispersal ratio was not statistically significant, though self-pollinated plants rarely produced non-dispersing seeds. Achene’s biomass increased with distance between parent plants, but pappus width did not, leading to a nonsignificant effect of pollination on falling velocity. Overall, pollen source affected mainly traits that were associated with reproductive output, but it had no clear effect on predominately dispersal-related traits. Such differences in the response of reproduction and dispersal traits to variation in pollen source suggest that dispersal-related selection is probably weak and/or masked by other forces.



Flora ◽  
2007 ◽  
Vol 202 (7) ◽  
pp. 547-554 ◽  
Author(s):  
Peggy Seltmann ◽  
Daniel Renison ◽  
Andrea Cocucci ◽  
Isabell Hensen ◽  
Klaus Jung


Botany ◽  
2014 ◽  
Vol 92 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Christopher R. Webster ◽  
Michael A. Jenkins

We investigated the influence of chronic herbivory by white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) on the age structure and morphology of Trillium catesbaei Elliott. At sites with contrasting histories of deer abundance (Cades Cove, high; Whiteoak Sink, low), we measured morphological characteristics and determined minimum plant age for 60 plants (30 per site) in the single-leaf life-history stage. We chose this stage because its presence is considered an indication of successful reproduction by the previous generation, but its value could be inflated if plants regress or remain in this stage for extended periods. Our results suggest that T. catesbaei may spend upwards of a decade in this stage. Cades Cove single leaves were significantly older (p = 0.011) than those at Whiteoak Sink. Rhizome recession (decay of the oldest portion) was more common at Cades Cove, suggesting greater regression to this stage from three-leaf stages. Although minimum plant age was significantly associated with vegetative attributes (p < 0.002) at Whiteoak Sink, these attributes were decoupled at Cades Cove (p ≥ 0.642). Collectively, our results suggest that chronic herbivory may lead to a long and regressive residency period in the single-leaf stage. Consequently, in Trillium populations heavily impacted by deer, the number of single-leaf plants may be a poor indicator of reproductive success and population viability.



Parasitology ◽  
1983 ◽  
Vol 86 (2) ◽  
pp. 335-344 ◽  
Author(s):  
D. J. Minchella ◽  
P. T. Loverde

SUMMARYA method of interrupting the life-cycle of the human blood fluke Schistosoma by increasing the proportion of genetically insusceptible intermediate host snails in natural populations was first proposed nearly 25 years ago. The method assumes that insusceptible snails will be at a selective advantage over susceptible snails when the schistosome parasite is present, and therefore natural selection will act to increase the proportion of alleles for insusceptibility. A major objection to the proposed technique is ‘If insusceptible snails are at a selective advantage, then why are they not predominant in natural populations that transmit disease?’ One explanation of this paradox is that insusceptibility may be associated with a disadvantageous character or a physiological defect. This study tests this hypothesis by measuring the relative reproductive success of susceptible and insusceptible snails under controlled conditions. Results indicate that insusceptible (unsuitable) snails are negatively affected in the presence of either susceptible snails or schistosome parasites. Furthermore, in the presence of both susceptible snails and schistosome parasites, insusceptible snails are selectively disadvantaged compared to susceptible snails. These results obtained under laboratory-controlled conditions suggest a plausible answer as to why insusceptible snails are not predominant in natural populations that transmit disease.





Sign in / Sign up

Export Citation Format

Share Document