A paleolimnological investigation of the effects of forest fire on lake water quality in northwestern Ontario over the past ca. 150 years

2002 ◽  
Vol 80 (12) ◽  
pp. 1329-1336 ◽  
Author(s):  
Andrew M Paterson ◽  
David S Morimoto ◽  
Brian F Cumming ◽  
John P Smol ◽  
Julian M Szeicz

Fire is an important mechanism of disturbance in boreal ecosystems; however, the effects of fire on lake ecosystems are still not well understood. This study provides a detailed assessment of the impacts of fire on the limnology of a small oligotrophic lake (Lake 42), located approximately 200 km northwest of Thunder Bay, Ont. The study lake is characterized by a small drainage ratio (watershed area : surface area) and a relatively long water residence time. Age establishment and fire scar analyses determined that at least one, and perhaps two, major fires had burned to the lake's shoreline in the past ca. 150 years. Using a paleoecological approach, diatoms were examined in a 210Pb-dated sediment core. Following watershed fires, minimal changes were noted in the diatom species assemblage. These findings may be explained by the low sedimentation rates and small drainage ratio of the study lake, although other studies suggest that the biological response may be minimal compared with physical–chemical responses in some ecosystems. Beginning in the early 1980s, however, distinct changes were noted in the species assemblage and in diatom-inferred total phosphorus. Our findings suggest that the study lake may be more sensitive to precipitation inputs of nutrients than to inputs resulting from watershed disturbances.Key words: paleolimnology, diatoms, forest fire, water quality.

2021 ◽  
Vol 25 (1) ◽  
pp. 676-687
Author(s):  
Oskars Purmalis ◽  
Laura Grīnberga ◽  
Linards Kļaviņš ◽  
Māris Kļaviņš

Abstract Lake ecosystems are important elements of hydrological regime, the quality of these ecosystems is affected by anthropogenic actions, and therefore, a variety of organisms, living in these habitats depend on the applied management solutions. Due to human activities freshwater ecosystems suffer from loss of biodiversity and increased eutrophication. Therefore, important aspects related to lake management include knowledge about the water quality, ecosystem response to climate change as well as increased risks of appearance and spreading of invasive species. Water quality, content of oxygen, nutrients, phytoplankton and distribution of macrophytes, including invasive species were analysed in Balvu and Pērkonu lakes. Presence of invasive species Canadian waterweed (Elodea canadensis) was detected, however, common reed (Phragmites australis) can be considered as expansive species. The analysis of current situation and existing management measures indicates persistent spreading of those species. Significant changes of lake water quality and climate may increase possible spreading of other, more aggressive, invasive species, for example – Nuttall’s waterweed (Elodea nuttallii).


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


2018 ◽  
Vol 18 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Kwang-Hee Lee ◽  
◽  
Min-Ho Kim ◽  
Nam-Woo An ◽  
Chul-hwi Park

2018 ◽  
Vol 169 (5) ◽  
pp. 260-268 ◽  
Author(s):  
Thomas Wohlgemuth ◽  
Violette Doublet ◽  
Cynthia Nussbaumer ◽  
Linda Feichtinger ◽  
Andreas Rigling

Vegetation shift in Scots pine forests in the Valais accelerated by large disturbances In the past dozen years, several studies have concluded a vegetation shift from Scots pine to oak (pubescent and sessile) forests in the low elevated zones of the Valais. It is, however, not fully clear in which way such a vegetation shift actually occurs and on which processes such a shift would be based. Two studies, one on the tree demography in the intact Pfynwald and the other on the tree regeneration on the large Leuk forest fire patch, serve to discuss different aspects of the shift from Scots pine to oak. The forest stands of Pfynwald consist of 67% Scots pines and 14% oaks. Regenerating trees are 2–3.5 times more frequent in small gaps than under canopy. In gaps of the Upper Pfynwald, seedlings and saplings of Scots pine are three times more abundant than oaks, while both species regenerate in similar quantities under canopy. In the Lower Pfynwald, young oaks – especially seedlings – are more frequent than Scots pines. A different process is going on at the lower part in the Leuk forest fire patch where Scots pines prevailed before the burn of 2003. While Scots pines regenerate exclusively close to the edge of the intact forest, oaks not only resprout from trunk but also profit from unlimited spreading of their seeds by the Eurasian jay. Regeneration from seeds are hence observed in the whole studied area, independent of the proximity of seed trees. After the large fire disturbance, a mixed forests with a high share of oaks is establishing, which translates to a rapid vegetation shift. The two trajectories are discussed in the light of climate change.


1998 ◽  
Vol 37 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Hany Hassan ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

Global climate change induced by increased concentrations of greenhouse gases (especially CO2) is expected to include changes in precipitation, wind speed, incoming solar radiation, and air temperature. These major climate variables directly influence water quality in lakes by altering changes in flow and water temperature balance. High concentration of nutrient enrichment and expected variability of climate can lead to periodic phytoplankton blooms and an alteration of the neutral trophic balance. As a result, dissolved oxygen levels, with low concentrations, can fluctuate widely and algal productivity may reach critical levels. In this work, we will present: 1) recent results of GCMs climate scenarios downscaling project that was held at the University of Derby, UK.; 2) current/future comparative results of a new mathematical lake eutrophication model (LEM) in which output of phytoplankton growth rate and dissolved oxygen will be presented for Suwa lake in Japan as a case study. The model parameters were calibrated for the period of 1973–1983 and validated for the period of 1983–1993. Meterologic, hydrologic, and lake water quality data of 1990 were selected for the assessment analysis. Statistical relationships between seven daily meteorological time series and three airflow indices were used as a means for downscaling daily outputs of Hadley Centre Climate Model (HadCM2SUL) to the station sub-grid scale.


2019 ◽  
Vol 55 (4) ◽  
pp. 2708-2721 ◽  
Author(s):  
S. M. Collins ◽  
S. Yuan ◽  
P. N. Tan ◽  
S. K. Oliver ◽  
J. F. Lapierre ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 1683
Author(s):  
Nandini Menon ◽  
Grinson George ◽  
Rajamohananpillai Ranith ◽  
Velakandy Sajin ◽  
Shreya Murali ◽  
...  

Turbidity and water colour are two easily measurable properties used to monitor pollution. Here, we highlight the utility of a low-cost device—3D printed, hand-held Mini Secchi disk (3DMSD) with Forel-Ule (FU) colour scale sticker on its outer casing—in combination with a mobile phone application (‘TurbAqua’) that was provided to laymen for assessing the water quality of a shallow lake region after demolition of four high-rise buildings on the shores of the lake. The demolition of the buildings in January 2020 on the banks of a tropical estuary—Vembanad Lake (a Ramsar site) in southern India—for violation of Indian Coastal Regulation Zone norms created public uproar, owing to the consequences of subsequent air and water pollution. Measurements of Secchi depth and water colour using the 3DMSD along with measurements of other important water quality variables such as temperature, salinity, pH, and dissolved oxygen (DO) using portable instruments were taken for a duration of five weeks after the demolition to assess the changes in water quality. Paired t-test analyses of variations in water quality variables between the second week of demolition and consecutive weeks up to the fifth week showed that there were significant increases in pH, dissolved oxygen, and Secchi depth over time, i.e., the impact of demolition waste on the Vembanad Lake water quality was found to be relatively short-lived, with water clarity, colour, and DO returning to levels typical of that period of year within 4–5 weeks. With increasing duration after demolition, there was a general decrease in the FU colour index to 17 at most stations, but it did not drop to 15 or below, i.e., towards green or blue colour indicating clearer waters, during the sampling period. There was no significant change in salinity from the second week to the fifth week after demolition, suggesting little influence of other factors (e.g., precipitation or changes in tidal currents) on the inferred impact of demolition waste. Comparison with pre-demolition conditions in the previous year (2019) showed that the relative changes in DO, Secchi depth, and pH were very high in 2020, clearly depicting the impact of demolition waste on the water quality of the lake. Match-ups of the turbidity of the water column immediately before and after the demolition using Sentinel 2 data were in good agreement with the in situ data collected. Our study highlights the power of citizen science tools in monitoring lakes and managing water resources and articulates how these activities provide support to Sustainable Development Goal (SDG) targets on Health (Goal 3), Water quality (Goal 6), and Life under the water (Goal 14).


Sign in / Sign up

Export Citation Format

Share Document