The role of medicarpin and maackiain in the response of red clover leaves to Helminthosporium carbonum, Stemphylium botryosum, and S. sarcinaeforme

1976 ◽  
Vol 54 (23) ◽  
pp. 2609-2619 ◽  
Author(s):  
Lorne J. Duczek ◽  
Verna J. Higgins

Helminthosporium carbonum, a corn pathogen, and Stemphylium botryosum, an alfalfa pathogen, are both nonpathogenic on red clover (Trifolium pratense L.), while S. sarcinaeforme is a foliar pathogen on red clover. In clover leaves challenged with H. carbonum, medicarpin and maackiain were the only inhibitory compounds found in diffusates or in leaf tissue in a concentration sufficient to account for the inhibition of this fungus. Helminthosporium carbonum was inhibited by and could not degrade medicaipin and (or) maackiain in vitro. Both S. botryosum and S. sarcinaeforme were only slightly inhibited by these compounds in mycelial growth bioassays, and both fungi degraded medicarpin and (or) maackiain in vitro and some evidence was obtained that degradation occurred in vivo. In contrast with the relatively high amounts of medicarpin and maackiain that accumulated in leaves challenged with H. carbonum, relatively low amounts accumulated in leaves challenged with either S. botryosum or S. sarcinaeforme. The evidence suggests that the resistance of clover to H. carbonum can be accounted for by these phytoalexins; however, differences in relation to accumulation of, inhibition by, and breakdown of medicarpin and (or) maackiain were not enough to explain the difference in pathogenicity of S. botryosum and S. sarcinaeforme on red clover.

Author(s):  
Gabriela Maria VICAȘ ◽  
Mircea SAVATTI

Establishing the effect of the amino acids as additional additives to the culture medium is and will be in the future one of our concerns of interest for the in vitro culture of some plants. The present study examines the effect of the glicocol added to the LS basal medium over the embryos of the Trifolium pratense L specie cultivated in vitro. There were followed: the percentage of plant regeneration of the red clover, its multiplication capacity and the formation of the root system, and also the evolution of the callus obtained on mediums with 2,4D, BA and amino acid.


Weed Science ◽  
1989 ◽  
Vol 37 (6) ◽  
pp. 825-829 ◽  
Author(s):  
S. G. Taylor ◽  
D. G. Shilling ◽  
K. H. Quesenberry ◽  
G. R. Chaudhry

Whole plant and tissue culture experiments were conducted to determine the difference in phytotoxicity of 2,4-D and its metabolite, 2,4-DCP, to red clover. At the whole plant level, the mean concentration of 2,4-DCP (10 mM) required to cause 50% growth inhibition (I50) of shoot dry weight was 24 times greater than for 2,4-D (0.42 mM). Using callus tissue, the I50value for 2,4-DCP (0.28 mM) was 22 times greater than for 2,4-D (0.013 mM) based on dry weights. The callus tissue was 36 and 32 times more sensitive to 2,4-DCP and 2,4-D than shoot tissue based on dry weights, respectively. These data indicate that 2,4-DCP was less phytotoxic than 2,4-D to red clover both in vitro and in vivo.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 415 ◽  
Author(s):  
Naveed Sabir ◽  
Tariq Hussain ◽  
Yi Liao ◽  
Jie Wang ◽  
Yinjuan Song ◽  
...  

Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1β, IL-6, IL-12 and TNF-α were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-β expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB.


1985 ◽  
Vol 63 (6) ◽  
pp. 991-994
Author(s):  
Chantal Lescure ◽  
Alain Chalamet

A 15N dilution technique is proposed to determine the role of nitrogen reserves in the plant on the estimation of dinitrogen fixation, during regrowth of perennial legumes. It is based on labelling of nitrogen compartments of the plant. Since the kinetics of utilization of nitrogen reserves of ryegrass (Lolium italicum L.) and red clover (Trifolium pratense L.) appear similar, ryegrass would be a good control plant. Despite this observation, the comparison of two methods (based on two or three sources of nitrogen) to estimate dinitrogen fixation shows the difficulty in applying the technique using 15N-labelled substrate over earlier periods of regrowth. In this case, the 15N method described for determining symbiotic dinitrogen fixation could be applied in controlled conditions.


Fitoterapia ◽  
2014 ◽  
Vol 94 ◽  
pp. 62-69 ◽  
Author(s):  
Paola Spagnuolo ◽  
Emanuela Rasini ◽  
Alessandra Luini ◽  
Massimiliano Legnaro ◽  
Marcello Luzzani ◽  
...  

1978 ◽  
Vol 58 (4) ◽  
pp. 983-992 ◽  
Author(s):  
UMESH C. GUPTA ◽  
E. W. CHIPMAN ◽  
D. C. MACKAY

Experiments were conducted on a peat soil in the greenhouse to determine the effects of Mo and lime on the leaf tissue Mo concentration and yield of red clover (Trifolium pratense L.), onions (Allium cepa L.), cauliflower (Brassica oleracea var. botrytis L.), lettuce (Lactuca sativa var. capitata L.), and carrots (Daucus carota L.). Molybdenum treatments were: no added Mo, seed treated with Mo, and 4.5, 9.0, 18.0, 36.0, 72.0, and 144 ppm Mo added to the soil. Increases in soil pH from 4.3 up to 6.9 resulted in yield increases of all crops except lettuce. Seed treatment with Mo or small quantities of Mo added to the soil were necessary for optimum yield of all crops. For onions, cauliflower, and lettuce, the Mo seed treatment alone was sufficient. No visual abnormal leaf symptoms were observed with actual leaf tissue Mo concentrations of 192, 640 and 1,018 ppm in red clover, cauliflower, and onions, respectively. Liming generally increased the Mo concentration of crops, but the increase in concentration to applied Mo depended upon the level of lime. Synergism between Mo and lime was observed in tissue Mo concentration for onions and cauliflower. Antagonism between Mo and lime at high levels was observed in yields for cauliflower and carrots. Molybdenum applications of 4.5 ppm or higher resulted in red clover tissue containing greater than 10 ppm Mo, which when fed to cattle could be toxic.


Sign in / Sign up

Export Citation Format

Share Document