Environmental and physiological control of needle conductance for bare-root black spruce, white spruce, and jack pine seedlings on boreal cutover sites

1986 ◽  
Vol 64 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Steven C. Grossnickle ◽  
Terence J. Blake

A study was conducted to examine the influence of environmental conditions of boreal cutover sites on plant water status and needle conductance of newly planted bare-root black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss.), and jack pine (Pinus banksiana Lamb.) seedlings. As absolute humidity deficit between the needles and air (AHD) increased, xylem pressure potentials (ψx) became most negative in black spruce, intermediate in white spruce, and least negative in jack pine seedlings. Needle conductance (gwv) was strongly related to AHD in all three species, with increasing AHD resulting in a decrease in gwv. However, at low levels of AHD, gwv values for black and white spruce seedlings were approximately 50 and 25% higher, respectively, than those for jack pine seedlings. For black and white spruce seedlings, gwv decreased as ψx became more negative, while jack pine gwv responded to more negative ψx with a threshold for stomatal closure at approximately −1.7 MPa. In all three species, increasing photosynthetically active radiation (PAR) resulted in greater gwv at all AHD levels. However, at high AHD levels, gwv, response to PAR was suppressed. The findings of this study indicate species differences in physiological response to atmospheric conditions under nonlimiting soil moisture conditions. The implications for successful reforestation are discussed.

2017 ◽  
Vol 47 (8) ◽  
pp. 1116-1122 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Conifer winter damage results primarily from loss of cold hardiness during unseasonably warm days in late winter and early spring, and such damage may increase in frequency and severity under a warming climate. In this study, the dehardening dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.) were examined in relation to thermal accumulation during artificial dehardening in winter (December) and spring (March) using relative electrolyte leakage and visual assessment of pine needles and spruce shoots. Results indicated that all four species dehardened at a similar rate and to a similar extent, despite considerably different thermal accumulation requirements. Spring dehardening was comparatively faster, with black spruce slightly hardier than the other conifers at the late stage of spring dehardening. The difference, however, was relatively small and did not afford black spruce significant protection during seedling freezing tests prior to budbreak in late March and early May. The dehardening curves and models developed in this study may serve as a tool to predict cold hardiness by temperature and to understand the potential risks of conifer cold injury during warming–freezing events prior to budbreak.


1988 ◽  
Vol 5 (3) ◽  
pp. 185-189 ◽  
Author(s):  
D. Craig Sutherland ◽  
Robert J. Day

Abstract This paper is the first general review of the affects of container volume on the survival and growth of containerized white spruce, black spruce, and jack pine seedlings. The review shows that the literature on this topic is fragmentary and inconsistent. Seedling growth in the greenhouse production phase has been more completely quantified than subsequent establishment and growth after out-planting in the field. In the greenhouse production phase, seedling growth increased from 72 to 360% when the container volume was tripled in size. After outplanting in the field, seedling growth trends were more variable. Seedling height growth increased from 34 to 84% when container volume was tripled in size. Seedling survival was more difficult to assess because of limited data. Only white spruce showed a 10% increase in survival with an increase in container volume. The indications from this literature review suggest that nursery managers and practicing foresters should become more aware of the limitations imposed on seedling survival and growth due to container volume. To maintain optional survival and growth for white spruce, black spruce and jack pine, the container volume should range from 90 to 120 cm3. North. J. Appl. For. 5:185-189, Sept. 1988.


1981 ◽  
Vol 16 (3) ◽  
pp. 322-355 ◽  
Author(s):  
H. J. B. Birks

AbstractKylen Lake, located within the Toimi drumlin field, is critically positioned in relation to Late Wisconsin glacial advances, for it lies between the areas covered by the Superior and St. Louis glacial lobes between 12,000 and 16,000 yr B.P. The pollen and plant-macrofossil record suggests the presence of open species-rich “tundra barrens” from 13,600 to 15,850 yr B.P. Small changes in percentages of Artemisia pollen between 14,300 and 13,600 yr B.P. appear to be artifacts of pollen-percentage data. Shrub-tundra with dwarf birch, willow, and Rhododendron lapponicum developed between 13,600 and 12,000 yr B.P. Black and white spruce and tamarack then expanded to form a vegetation not dissimilar to that of the modern forest-tundra ecotone of northern Canada. At 10,700 B.P. spruce and jack pine increased to form a mosaic dominated by jack pine and white spruce on dry sites and black spruce, tamarack, and deciduous trees such as elm and ash on moist fertile sites. At 9250 yr B.P. red pine and paper birch became dominant to form a vegetation that may have resembled the dry northern forests of Wisconsin today. The diagram terminates at 8410 ± 85 yr B.P. Climatic interpretation of this vegetational succession suggests a progressive increase in temperature since 14,300 yr B.P. This unidirectional trend in climate contrasts with the glacial history of the area. Hypotheses are presented to explain this lack of correspondence between pollen stratigraphy and glacial history. The preferred hypothesis is that the ice-margin fluctuations were controlled primarily by changes in winter snow accumulation in the source area of the glacier, whereas the vegetation and hence the pollen stratigraphy were controlled by climatic changes in front of the ice margin.


1975 ◽  
Vol 51 (2) ◽  
pp. 53-54
Author(s):  
W. Stanek

Black spruce (Picea mariana [Mill.] B.S.P.) and jack pine (Pinus banksiana Lamb.) seedlings were grown in a green-house on peat-filled flats flooded with nutrient solution or distilled water. None was aerated. However, an O2 concentration gradient existed across the flats, 3.0 – 3.7 ppm along the edges, and 1.4 – 1.9 ppm in the centers. After 4½ months seedlings of both species grew taller with nutrient solution than with distilled water. In flats supplied with nutrient solution, seedlings of both species grew taller along the edges than in the centers, whereas in flats supplied with distilled water height differential did not develop. Jack pine grew taller than black spruce under similar conditions.


1986 ◽  
Vol 62 (5) ◽  
pp. 446-450 ◽  
Author(s):  
S. W. J. Dominy ◽  
J. E. Wood

Seeding trials were established on four different sites in northern Ontario (46°41′N to 49°19′N) in 1979 and 1980. Jack pine (Pinus banksiana Lamb.) was seeded on two medium sand sites, black spruce (Picea mariana [Mill.] B.S.P.) on a sandy clay site, and white spruce (P. glauca [Moench] Voss) on a clay site. Conventional bare spot seeding was compared with spot seeding under Finnish-designed plastic shelters. At least two seeding dates were compared in each trial. Third- and fifth-year stocking and fifth-year height data are presented.Stocking of all three species was increased, regardless of sowing date, when shelters were used. With the exception of June-sown black spruce and one June sowing of jack pine, height growth was not significantly improved through the use of seed shelters. Shelters may prove to be a viable regeneration option only on cooler, exposed sites with little vegetative competition. Key words: Shelter spot seeding, bare spot seeding, Pinus banksiana Lamb., Picea mariana [Mill.] B.S.P., P. glauca [Moench] Voss.


Botany ◽  
2016 ◽  
Vol 94 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Rongzhou Man ◽  
Steve Colombo ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Compared with the effects of spring frosts on opening buds or newly flushed tissues, winter freezing damage to conifers, owing to temperature fluctuations prior to budbreak, is rare and less known. In this study, changes in cold hardiness (measured based on electrolyte leakage and needle damage) and spring budbreak were assessed to examine the responses of four boreal conifer species — black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca) (Moench) Voss), jack pine (Pinus banksiana Lamb.), and lodgepole pine (Pinus contorta Dougl. ex. Loud.) — to different durations of experimental warming (16 °C day to –2 °C night with a 10 h photoperiod, except for night temperatures during November warming (+2 °C)). Seedlings showed increased responses to warming from November to March, while the capacity to regain the cold hardiness lost to warming decreased during the same period. This suggests an increasing vulnerability of conifers to temperature fluctuations and freezing damage with the progress of chilling and dormancy release from fall to spring. Both lodgepole pine and jack pine initiated spring growth earlier and had greater responses to experimental warming in bud phenology than black spruce and white spruce, suggesting a greater potential risk of frost/freezing damage to pine trees in the spring.


2006 ◽  
Vol 36 (8) ◽  
pp. 1943-1950 ◽  
Author(s):  
Kevin J Kemball ◽  
G. Geoff Wang ◽  
A Richard Westwood

We examined jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) seed germination and seedling recruitment in aspen (Populus tremuloides Michx.) and conifer mixedwood stands following the 1999 Black River fire in southeastern Manitoba, Canada. Three postfire seedbed types were tested: scorched (surface litter only partially consumed), lightly burned (surface litter consumed with little or no duff consumption), and severely burned (complete consumption of litter and duff exposing mineral soil). Seeds were sown in 1999, 2000, and 2001, and each cohort was monitored for 3 years. In 1999, severely burned seedbeds had poor germination, while scorched seedbeds had the highest germination. The reverse was true in 2001. After the first growing season, continued survival of seedlings was greater on severely burned seedbeds for all three cohorts. However, better survival on severely burned seedbeds was not sufficient to overcome poor germination in 1999 and 2000. When using artificial seeding to promote conifer regeneration, we recommend a delay of one full year after a severe spring fire for jack pine and two full years for black spruce and white spruce on boreal aspen and conifer mixedwood sites.


2010 ◽  
Vol 86 (2) ◽  
pp. 193-199 ◽  
Author(s):  
G. Geoff Wang ◽  
Kevin J Kemball

Two boreal mixedwood stands burned by the 1999 Black River wildfire in southeastern Manitoba, Canada were selected to study the effect of fire severity on early survival and growth of planted jack pine (Pinus banksiana), black spruce (Picea mariana) and white spruce (Picea glauca) seedlings. In each stand, three fire severity classes (scorched, lightly burned, and severely burned) were identified based on the degree of forest floor consumption. Fire severity was not a significant factor on mortality. No mortality difference was found among species, except for year 5 when jack pine had significantly higher mortality than both black spruce and white spruce. Jack pine and black spruce had their highest mortality in year 4, while white spruce had its highest mortality in year 1. Under natural competition, seedling growth increased with increasing fire severity. When competition was removed, fire severity did not affect seedling growth. Regardless of fire severity and competition, jack pine had better diameter and height growth than black spruce, which, in turn, grew slightly taller than white spruce. Planted seedlings faced less intense vegetation competition on severely burned plots compared to scorched or lightly burned plots. Regardless of fire severity and species, competition increased with time since planting. Our study results indicate that planting immediately after a wildfire is a viable option to establish conifer components on burned boreal mixedwood stands. Key words: fire severity, plantation, regeneration, Pinus banksiana, Picea mariana, Picea glauca


2003 ◽  
Vol 33 (2) ◽  
pp. 243-256 ◽  
Author(s):  
Marc-André Parisien ◽  
Luc Sirois

This study examines how forest structure and composition change with spatial variations in the fire cycle across a shore-hinterland gradient. Twenty-one well-drained sites were sampled at different distances from James Bay to describe the forest stands. To quantify the role of fire in tree species distribution, a spatial analysis of fire polygons from 1930 to 1998 was undertaken in a 43 228 km2 study area adjacent to James Bay. Results from this analysis reveal an important decrease in the fire cycle, from 3142 to 115 years, from the shore to the hinterland. In forests bordering James Bay, white spruce (Picea glauca (Moench) Voss) is found in pure stands. It is gradually replaced by black spruce (Picea mariana (Mill.) BSP) at 0.5 km from the shore. Jack pine (Pinus banksiana Lamb.) abruptly appears at 22 km from the shore. There is a positive correlation between the frequency of white spruce and the fire cycle (R = 0.893), whereas this correlation is negative for black spruce (R = –0.753) and jack pine (R = –0.807) (Spearman correlations). Jack pine is confined to regions having a short fire cycle, while black spruce can seemingly maintain itself with or without fire. The exclusion of white spruce hinterland seems to be mainly due to a short fire cycle; however, other factors, such as soil development and species abundance, presumably have a marked influence on the distribution of this species.


Sign in / Sign up

Export Citation Format

Share Document