Structure of ectomycorrhizae formed by Wilcoxina mikolae var. mikolae with Picea mariana and Betula alleghaniensis

1991 ◽  
Vol 69 (10) ◽  
pp. 2149-2157 ◽  
Author(s):  
Pamela F. Scales ◽  
R. L. Peterson

The structure of ectomycorrhizae synthesized between the E-strain fungus, Wilcoxina mikolae var. mikolae and two tree species, Picea mariana and Betula alleghaniensis, was characterized by light microscopy and scanning electron microscopy. For both mycorrhizal types, mantle formation was visible on lateral roots within 10 days of inoculation. Picea mariana ectomycorrhizae had a very thin mantle whereas B. alleghaniensis ectomycorrhizae had a mantle consisting of several layers. For both mycorrhizal types, the innermost mantle hyphae were embedded in a considerable amount of mucigel on the root surface. A well-developed Hartig net with labyrinthic growth occurred in both types of mycorrhizae. Betula alleghaniensis ectomycorrhizae had a paraepidermal Hartig net, and the root epidermal cells were radially elongate at an oblique angle. The Hartig net of P. mariana ectomycorrhizae penetrated the epidermis and all layers of the cortex. The cytoplasmic density of the intercellular hyphae was greatest towards the root apex. Ectomycorrhizal associations formed by E-strain fungi were similar to ectomycorrhizae formed by other fungi. Key words: E-strain, ectomycorrhizae, Wilcoxina, Picea, Betula, Hartig net.


1991 ◽  
Vol 69 (10) ◽  
pp. 2135-2148 ◽  
Author(s):  
Pamela F. Scales ◽  
R. L. Peterson

Seedlings of Pinus banksiana were grown in growth pouches and inoculated with Wilcoxina mikolae var. mikolae, Wilcoxina mikolae var. tetraspora, and Wilcoxina rehmii. Ectendomycorrhizae formed between P. banksiana and W. mikolae var. mikolae developed rapidly following inoculation. The mantle was of variable width, and a large amount of mucigel was evident on the root surface. Intracellular penetration of the cortical cells by hyphae occurred one to two cells distal to Hartig net formation. Both light and transmission electron microscopy revealed labyrinthic growth of Hartig net hyphae that were densely cytoplasmic during early penetration stages but became vacuolate as the association aged. Intracellular colonization of the cortex was extensive, with the hyphae highly branched and surrounded by an interfacial matrix and cortical cell plasma membrane. The external morphology and anatomy of ectendomycorrhizae formed between W. mikolae var. tetraspora and W. rehmii and P. banksiana were similar to those described for W. mikolae var. mikolae. Key words: ectendomycorrhizae, Wilcoxina, Pinus banksiana, intracellular, Hartig net, E-strain.



1990 ◽  
Vol 68 (3) ◽  
pp. 579-593 ◽  
Author(s):  
H. B. Massicotte ◽  
R. L. Peterson ◽  
C. A. Ackerley ◽  
L. H. Melville

The ontogeny and ultrastructure of ectomycorrhizae synthesized between Betula alleghaniensis (yellow birch) and Pisolithus tinctorius, a broad host range fungus, were studied to determine the structural modifications in both symbionts during ectomycorrhiza establishment. A number of stages, including initial contact of hyphae with the root surface, early mantle formation, and mature mantle formation, were distinguished. Interactions between hyphae and root hairs were frequent. As a paraepidermal Hartig net developed, root epidermal cells elongated in a radial direction, but wall ingrowths were not formed. Repeated branching of Hartig net hyphae resulted in extensive fine branches and the compartmentalization of hyphal cytoplasm. Nuclei and elongated mitochondria were frequently located in the narrow cytoplasmic compartments, and [Formula: see text] thickenings developed along walls of cortical cells in primary roots.



2013 ◽  
Vol 10 (5) ◽  
pp. 560-566 ◽  
Author(s):  
Ali CEKICI ◽  
Ilay MADEN ◽  
Sercan YILDIZ ◽  
Tangul SAN ◽  
Gulden ISIK


2015 ◽  
Vol 21 (5) ◽  
pp. 1264-1270 ◽  
Author(s):  
Manila Chieruzzi ◽  
Stefano Pagano ◽  
Carlo De Carolis ◽  
Stefano Eramo ◽  
José M. Kenny

AbstractThe inflammatory resorption of dental root apex (i.e., the process of removal of cementum and/or dentine through the activity of resorbing cells) may show different configurations and damage the apical root structure. As knowing the morphology of resorption areas of human teeth is essential for the success of endodontic treatments, we investigated the apical resorption by scanning electron microscopy, focusing on roots with granulomas. A total of 30 teeth (with penetrating carious lesions and chronic periapical lesions) were examined, the apical third of the roots were removed and analyzed to estimate periforaminal and foraminal resorption, shape and morphology of foramen resorption, centering of the periforaminal resorption area, and diameters of each apical foramen. Periforaminal resorption was present in all samples, whereas foraminal resorption was present in 92% of cases (mainly funnel shaped). Lacunae were observed in the foraminal resorption area with an average diameter of 35±14 μm. The major and minor diameters of the foramina in teeth with resorption were 443 and 313 μm, respectively (higher than in healthy teeth). This result indicates an expansion of the apical diameters caused by the pathology, which could encourage a different clinical instrumentation for these teeth.



1973 ◽  
Vol 44 (9) ◽  
pp. 559-563 ◽  
Author(s):  
Raymond F. Wilkinson ◽  
Joseph E. Maybury


Sign in / Sign up

Export Citation Format

Share Document