Comparative development of perianth and androecial primordia of the single flower and the homeotic double-flowered mutant in Hibiscus rosa-sinensis (Malvaceae)

1996 ◽  
Vol 74 (12) ◽  
pp. 1871-1882 ◽  
Author(s):  
Judith P. Maclntyre ◽  
Christian R. Lacroix

The double-flowered variety of Hibiscus rosa-sinensis L. (Malvaceae) displays a divergent floral morphology that appears to fit the criteria for homeosis. A comprehensive definition defines homeosis as the complete or partial replacement of one part of an organism with another part. The corolla of the single flower is pentamerous. The mature flower has a staminal tube bearing 60 – 70 stamens that surrounds an exserted synstylous gynoecium with five fused stigmas. In double flowers, the outermost whorl of petals is similar in appearance to that of the single flower. The remaining floral appendages have a morphology that is intermediate between petals and stamens, to varying degrees. No two double flowers are exactly the same, even on the same plant. As with other members of the Malvaceae, floral development in both floral types is unusual: once the calyx has been initiated, a ring meristem is formed from which both petal and stamen primordia are initiated. In the single flower, petal primordia are initiated on the flank of the ring, and then stamen primordia arise in five distinct and orderly clusters. In the double flower, petal primordia are also initated on the abaxial flank, but the remainder of the ring initiates primordia that form a mixture of petals, petal – stamen intermediates, and stamens. A common ring meristem that has two different developmental pathways provides a novel opportunity to study homeosis from the perspective of comparative developmental morphology. Keywords: homeosis, Hibiscus rosa-sinensis, androecium, intermediates, ring meristem, floral development.


Botany ◽  
2018 ◽  
Vol 96 (6) ◽  
pp. 345-357
Author(s):  
Christian H. Norton ◽  
Christian R. Lacroix

The flowers of Hibiscus rosa-sinensis L. (Malvaceae) exist in two floral morphologies: a single phenotype, and a double phenotype. This study focused on the early stages of floral development, just before the initiation of petal primordia and up until the bifurcation of the stamen primordia. The two phenotypes were compared using logistic regression and bootstrapping techniques. Four aspects of floral development were considered: (i) organogenesis of petal and stamen primordia, and stamen bifurcation; (ii) allometry of stamen primordia; (iii) morphology of stamen primordia; and (iv) size of stamen primordia. The single and double buds initiated petal primordia at the same bud radii, but double buds initiated stamen primordia and stamen bifurcation at larger bud radii than the single phenotype. Double stamen primordia were shorter, wider, and more spherical than single stamen primordia, although the sizes of the single and double stamen primordia (defined as the sum of their length and width measurements) were not different. Results suggest that the additional space on the floral meristem of the double phenotype is linked to the divergent development of stamen primordia occupying this extra space.



1991 ◽  
Vol 4 (3) ◽  
pp. 553 ◽  
Author(s):  
AN Drinnan ◽  
PY Ladiges

Floral development is described in selected species of informal subgenus Symphyomyrtus (Pryor and Johnson 1971). The corolline operculum in most species is equivalent to those of informal subgenera Eudesmia, Idiogenes (E. cloëziana) and Monocalyptus. It is formed by growth centre continuity, and shows characters consistent with the dorsal components of Angophora and bloodwood corolline parts. Stamen primordia form on a corolline buttress that develops into the stemonophore of the mature flower. This feature is a synapomorphy for Symphyomyrtus sens. strict., Eudesmia, Idiogenes and Monocalyptus. Eucalyptus microcoiys has the plesiomorphic conditions of four free imbricate petals that show no evidence of compound development, and stamens arising directly on the floral apex, not on a stemonophore precursor. The apparent bundling of stamens is a result of differential bud growth, and bears only a superficial resemblance to stamen groups in Eudesmia eucalypts. The corollas of E. brachyandra (informal subgenus Telocalyptus) and E. guilfoylei (Symphyomyrtus) also consist of free, simple petals, but the unavailability of early developmental stages precludes a complete interpretation of these and the remaining three species of Telocalyptus.



1973 ◽  
Vol 51 (3) ◽  
pp. 647-656 ◽  
Author(s):  
U. Posluszny ◽  
R. Sattler

The floral appendages of Potamogeton densus are initiated in an acropetal sequence. The first primordia to be seen externally are those of the lateral tepals, though sectioning young floral buds (longitudinally, parallel to the inflorescence axis) reveals initial activity in the region of the lower median (abaxial) tepal and stamen at a time when the floral meristem is not yet clearly demarcated. The lateral (transversal) stamens are initiated simultaneously and unlike the median stamens each arises as two separate primordia. The upper median (adaxial) tepal and stamen develop late in relation to the other floral appendages, and in some specimens are completely absent. Rates of growth of the primordia vary greatly. Though the lower median tepal and stamen are initiated first, they grow slowly up to gynoecial inception, while the upper median tepal appears late in the developmental sequence but grows rapidly, soon overtaking the other tepal primordia. The four gynoecial primordia arise almost simultaneously, although variation in their sequence of inception occurs. The two-layered tunica of the floral apices gives rise to all floral appendages through periclinal divisions in the second layer. The third layer (corpus) is involved as well in the initiation of the stamen primordia. Procambial strands develop acropetally, lagging behind primordial initiation. The lateral stamens though initiating as two primordia each form a single, central procambial strand, which differentiates after growth between the two primordia of the thecae has occurred. A great amount of deviation from the normal tetramerous flower is found, including completely trimerous flowers, trimerous gynoecia with tetramerous perianth and androecium, and organs differentiating partially as tepals and partially as stamens.



1992 ◽  
Vol 70 (2) ◽  
pp. 258-271 ◽  
Author(s):  
Claudia Erbar

The early floral development of Stylidium adnatum and Stylidium graminifolium is characterized by an initial circular primordium whose areas in the transversal plane of the floral primordium show enhanced growth. The spiral inception of the five sepals starts before the differentiation of the initial circular primordium into two stamen primordia in transversal position (in relation to the floral diagram) and the corolla ring primordium below the stamen primordia. Then five petal primordia, which alternate with the sepals, arise on the corolla ring primordium (early sympetaly). Peculiar to the flowers of Stylidiaceae is the column that bears at its top both stigma and anthers. Probably this column should be interpreted as a receptacular tube. No distinct carpel primordia have been observed. The inferior ovary results from intercalary growth in the peripheral parts of the receptacle below the calyx, corolla, and stamen primordia. The residual floral apex gives rise to a transversal septum, by which the ovary becomes bilocular. None of the morphological, palynological, and embryological characters discussed contradicts a position of the Stylidiaceae near the Campanulales, and several of these characters support this position. Key words: Stylidiaceae, Campanulales, floral development, systematic position, floral biology.



1986 ◽  
Vol 64 (8) ◽  
pp. 1620-1631 ◽  
Author(s):  
Usher Posluszny ◽  
Jean M. Gerrath

The vegetative and floral development of the hybrid grape cultivar ‘Ventura’ was studied. A tendril forms opposite the last-formed leaf on the shoot but is slightly delayed in its initiation. Six nodes and 10 primordia complete one leaf–tendril initiation cycle. The inflorescence develops at the same site and is initially indistinguishable from the tendril. Inflorescence primordia are initiated on the upper arm, first opposite each other in a decussate arrangement and then apparently spirally. Each inflorescence primordium may subsequently initiate two lateral primordia, which become subtended by bracts. These in turn may repeat the pattern so that ultimately third- or fourth-order cysmose inflorescence branches may be produced. During floral development the calyx is initiated at first as three primordia, followed by a ring, which ultimately develops five lobes. The five corolla primordia alternate with the sepals. The five stamen primordia are initiated opposite the petals. The gynoecium initiates as five primordia, which later become a ring. Two septae are initiated opposite each other on the inner flank of the ring, forming the two-loculed ovary. Each septum forms a placenta, giving rise to two ovules. The upper portion of the gynoecial ring grows up over the ovules and forms the short style and discoid stigma.



2007 ◽  
Vol 55 (1) ◽  
pp. 30 ◽  
Author(s):  
Sandra Luz Gómez-Acevedo ◽  
Susana Magallón ◽  
Lourdes Rico-Arce

The complete sequence of floral development in three species of Acacia was analysed. These species were sampled from each of the three Acacia subgenera. The species were Acacia berlandieri Benth. (subg. Aculeiferum), A. pennatula (Schltdl. & Cham.) Benth. (subg. Acacia) and A. saligna (Labill.) H.L.Wendl. (subg. Phyllodineae). The aim of the study was to determine whether the different subgenera share developmental pathways during flower formation. This study showed that development in the genus Acacia is heterogeneous. Each species studied showed different inception patterns of the calyx and androecium, whereas the inception patterns of the corolla and gynoecium were similar. These differences of inception in the calyx are not necessarily constant within each subgenus. Nevertheless, each subgenus was differentiated on the basis of inception patterns of the androecium, and other features such as the presence or absence of congenital or postgenital fusion in the calyx and corolla, and the time of differentiation of calyx and corolla tubes and the style.



1998 ◽  
Vol 11 (6) ◽  
pp. 689 ◽  
Author(s):  
D. A. Orlovich ◽  
A. N. Drinnan ◽  
P. Y. Ladiges

Floral development of seven species of Melaleuca and four species of Callistemon is compared. The multistaminate fascicles of Melaleuca develop from stamen primordia initiated on antepetalous pre-staminal bulges (PSBs); the resultant bundles of stamens become separated by hypanthial expansion as the flower bud enlarges. In most species of Callistemon examined the stamen primordia are initiated directly on the floral apex, and the stamens are distributed evenly around the hypanthium at anthesis. The possession of large and prominent PSBs, and thus stamen fascicles, is a feature of most species of Melaleuca and their total absence is a feature of most species of Callistemon; however, there is a continuum between these two extremes. Several taxa of both genera exhibit intermediate morphology. In C. glaucus (Bonpl.) Sweet, small but distinct PSBs develop, which influence antepetalous stamen groups that remain contiguous at anthesis. This also occurred in M. leucadendra (L.) L. This variable expression of PSBs is the result of differences in the timing of stamen initiation. Other variable features are determined by the space available for primordium initiation and the patterns of growth and expansion of the developing flower.



1992 ◽  
Vol 70 (9) ◽  
pp. 1765-1776 ◽  
Author(s):  
L. P. Ronse Decraene ◽  
E. F. Smets

A study of the floral development of Dicentra formosa, Corydalis lutea, and Hypecoum procumbens was carried out to better understand the nature of the androecium in Fumariaceae. Sepals emerge successively in a median position and are followed by two alternating pairs of petals. Four stamen primordia are formed in a diagonal position. They are promptly followed by two lateral, slightly externally inserted primordia. In Dicentra and Corydalis the stamens arise on two crescent-shaped protuberances. In Hypecoum, four diagonal androecial primordia fuse into two median staminal complexes. The gynoecium emerges as a girdling primordium with four growth centers. Different interpretations of the androecium are discussed. It is demonstrated that the androecium in the Fumariaceae consists basically of two whorls: an outer whorl of four alternipetalous stamens and an inner whorl of two lateral stamens superposed to the outer petals. The monothecal nature of the alternipetalous stamens and the fusion of the stamens in two triplets is probably caused by a spatial median compression of the flower bud. The androecium of Hypecoum is the result of interprimordial growth between the pairs of monothecal stamens, and the androecium of Pteridophyllum arises through the loss of the two lateral stamens superposed to the outer petals. Key words: Fumariaceae, floral development, androecium, stamen whorls.



Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 112 ◽  
Author(s):  
Hera Gul ◽  
Zhaoguo Tong ◽  
Xiaolei Han ◽  
Iqra Nawaz ◽  
Safdar Wahocho ◽  
...  

Double-flower ornamental crabapples display eye-catching morphologies in comparison to single flower, but the genetic basis of double-flower development is not yet well known in apples. In order to comprehensively understand the differential expression of genes (DEGs) between single and double flower, the transcriptome of double flower crabapples Malus Kelsey, Malus micromalus, Malus Royalty, and a single flower cultivar Malus Dolgo were compared by RNA-sequencing. The results showed that there were 1854 genes in overlapped DEGs among all sample comparisons in apple single and double flower varieties. A large number of development and hormone related DEGs were also recognized on the basis of GO and KEGG annotations, and most of the genes were found to be down-regulated in double flowers. Particularly, an AGL24-MADS-box gene (MD08G1196900) and an auxin responsive gene (MD13G1137000) were putatively key candidate genes in the development of double flower by weighted gene co-expression network analysis (WGCNA). The study provides insights into the complex molecular mechanism underlying the development of the double flower in apple.



2014 ◽  
Vol 62 (3) ◽  
pp. 217 ◽  
Author(s):  
Somayeh Naghiloo ◽  
Zahra Esmaillou ◽  
Mohammad Reza Dadpour

A comparative study of floral ontogeny in single- and double-flowered Alcea rosea L. was conducted using epi-illumination light microscopy. In both floral types, floral differentiation starts with the appearance of three epicalyx lobes, which subsequently subdivide to produce a 7–10-parted epicalyx. Five sepals appear then in a unidirectional or possibly spiral sequence. In single flowers, a corolla-androecium common primordium is formed and subsequently differentiated into five androecial sectors (= primary androecial primordia). Petals are developed at the base of the androecial sectors and secondary androecial primordia are initiated centrifugally in two rows on each sector. Later, tertiary androecial primordia are formed by the subdivision of secondary androecial primordia, which then differentiate into androecial units. Three types of double flowers were identified regarding androecial development. The first type of double flowers shows a more or less disorganised nature. However, 10 proliferation zones can be indentified in the proximal and distal tips of the androecial sectors. In the second and third types of double flowers, androecial development follows similar developmental pathways to that of single flowers. However, in second-type double flowers, the secondary androecial primordia differentiate into petals and the stamens then develop from the free space between the two rows of secondary androecial primordia. In third-type double flowers, after complete primordial partitioning, some primordia on the marginal parts of each androecial sector develop into petaloids or intermediate appendages. The gynoecium appears similarly in both floral types as numerous congenitally united carpel primordia. The double-flowered phenotypes of Alcea appear to fit the criteria for homoheterotopy with complete or partial replacement of stamens with petals, as well as for neoheterotopy, with the formation of stamens in a new position. Based on mutant phenotypes, it is suggested that different functions possibly contribute to the proliferation and differentiation of common primordia.



Sign in / Sign up

Export Citation Format

Share Document